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Abstract

In this paper, we show that the VC dimension of
half-guarding a terrain is exactly 2 or 3, depending
on certain assumptions. We also show that the VC
dimension of half-guarding a monotone polygon is
exactly 4.

1 Introduction

A full guard is a guard that can see 360°. In our
paper, we define a half guard as a guard that sees
180° and only sees to the right. VC dimension is a
measure of the complexity of some set system. It has
been studied by researchers for many variants of the
art gallery problem. Guarding simple polygons with
full guards has a VC dimension between 6 and 14 [1].
Guarding monotone polygons (simple polygons) with
full guards where guards are limited to being on the
boundary of the polygon was shown to be exactly 6
in both types of polygons [2, 3]. The structure half
guards add to the art gallery problem is interesting
because the difference, as compared to, full guards, is
not trivial. For example, convex polygons have a VC
dimension of 1 with half guards despite having a VC
dimension of 0 with full guards. Monotone polygons,
where all guards and viewpoints are located on the
boundary, have a VC dimension of 4 with half guards
despite having a VC dimension of 6 with full guards.

A set of guards G in P is shattered if for every
Gs ⊆ G, there exists a point that is seen by the guards
in Gs and by no guards in G\Gs. With half guarding,
we show that the VC dimension is exactly 4. The
terrain guarding problem with full guards has a VC
dimension of exactly 4 [4]. With half guarding, we show
that the VC dimension is exactly 2 or 3, depending
on certain assumptions.

Notation: Let p < q mean that point p is to the
left of q, i.e. the x coordinate of p.x < q.x. With
half guarding a polygon (resp. terrain), a point p
sees a point q if the line segment connecting p and q
does not go outside of the polygon (resp. below the
terrain) and p.x ≤ q.x. Let p and q be two points such
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that p.x < q.x, then [p, q) denotes every point in the
polygon between p and q (including the vertical line
containing p but excluding the vertical line containing
q). Let l be the leftmost point of the polygon and let
r be the rightmost point of the polygon. The ceiling
(resp. floor) denotes every boundary point in [l, r] as
we travel clockwise (resp. counterclockwise) from l to
r. We define viewpoint as a point that is exactly seen
by a subset of the guards. For example, the viewpoint
vp(AC) is a point in the polygon that is seen by guards
A and C but is not seen by any other guards.

2 VC dimension of terrains

We start by discussing the VC dimension of terrains
with regards to half guards. The VC dimension of a
terrain with regards to half guards depends on if a
point on the terrain can be considered both a guard
and a viewpoint. If guards and viewpoints must be
disjoint, then the VC dimension is 2. If a point on
the terrain can be both a guard and a viewpoint, then
the VC dimension is 3. Figure 1 shows an example of
a terrain being shattered with 2 guards. We use the
standard order claim without proof.

Claim: Let A,B,C,D be 4 points on a terrain with
A.x < B.x < C.x < D.x. If A sees C and B sees D,
then A must see D.

Figure 1: A terrain shattered by 2 half guards.

Theorem 1 If a terrain guarding problem does (resp.
does not) allow a guard and a viewpoint to be the same
point, then the VC dimension of a terrain is exactly 3
(resp. 2).
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Proof. We will first consider the case where guards
and viewpoints cannot be located at the same point.
Let A,B and C be guards such that A.x < B.x <
C.x. Assuming that a guard and viewpoint cannot
be the same point, the viewpoints that are seen by
C must be strictly to the right of C. It follows that
B.x < C.x < vp(BC).x and B.x < C.x < vp(AC).x.
If vp(BC).x < vp(AC).x, then we have B.x < C.x <
vp(BC).x < vp(AC).x. By the order claim, B sees
vp(AC), a contradiction. If vp(AC).x < vp(BC).x,
then A.x < B.x < vp(AC).x < vp(BC).x. By the
order claim, A sees vp(BC), a contradiction.

Next we consider the VC dimension of terrains where
a guard and a viewpoint can be at the same point.
In this case, the VC dimension is 3. We achieve a
lower bound of 3 by giving an example of a terrain
shattering 3 guards in Figure 2.

Figure 2: A terrain shattered by 3 half guards. In this
example, C and vp(BC) are the same point.

We will show that it is impossible for such a terrain
to have a VC dimension of 4. Let A,B,C,D be the
guards of this polygon with A.x ≤ B.x ≤ C.x ≤ D.x.
Consider the following cases:

1. If the viewpoint vp(AC).x < vp(BD), then A.x <
B.x < vp(AC).x < vp(BD).x. By the order claim
using A,B, vp(AC), vp(BD), A sees vp(BD).

2. If the viewpoint vp(BD).x < vp(AC), then B.x <
C.x < vp(BD).x < vp(AC).x. By the order claim
using B,C, vp(BD), vp(AC), B sees vp(AC).

□

3 VC dimension of monotone polygons

We show that the VC dimension of half guarding a
monotone polygon is exactly 4. We obtain the lower
bound for monotone polygons by giving an example
of a monotone polygon being shattered by 4 guards as
seen in Figure 3. We now show that the 5 guards can-
not be shattered with a case analysis. A few cases are
shown in the paper with the remaining ones omitted
due to lack of space. We use the following lemma:

Figure 3: Polygon shattered by 4 half guards.

Figure 4: Lemma 2 where s, t and u are on the ceiling.

Lemma 2 Let s < t < u < v where s, t, u are on the
same side of the polygon, s sees u, t sees v, and s does
not see v. The opposite side of the polygon must block
s from seeing v.

Proof. W.l.o.g., assume s, t and u are on the ceiling.
If a point p′ on the ceiling is used to block s from v
such that s.x < p′.x < u.x, then s is blocked from u.
If a point p′ on the ceiling is used to block s from v
such that t.x < p′.x < v.x, then t is blocked from v. If
the ceiling wraps underneath v to block s from v, then
the polygon is not monotone. Therefore, if s does not
see v, the floor must block it. □

Figure 5: Lemma 3 where p is on the ceiling and the
floor blocks p from q.

Lemma 3 Let p and q be two points in the polygon
and let p < q. If p is blocked from q using the side
opposite p, then no point in [l, p] can see q.

Proof. W.l.o.g, assume that p is on the ceiling and
the floor is blocking p from q. Let o be some point to
the left of p. The −→oq ray lies in between the −→pq ray
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and the floor. If this were not the case, then p would
have blocked o from q. If the floor blocks p from q, the
−→oq ray must also go through the floor and therefore, q
must also be blocked from o. □

Lemma 4 Let s < t < u, where t and u are on
opposite sides of the polygon, s sees u, and t does not
see u. It must be that t cannot see any point in [u, r].

Proof. Assume, w.l.o.g., that t is on the floor. Note
that t cannot be blocked from u using the ceiling since
by Lemma 3, s would not see u. Thus, t must be
blocked from u using the floor. Let v denote some
point to the right of u. If the

−→
tv line crosses above

u, then the ceiling will block t from v. If the
−→
tv line

crosses below u, then the floor will block t from v since
the floor is blocking t from u. □

Corollary 4.1 Let t < u, t is on the floor (resp. ceil-
ing), u is on the ceiling (resp. floor), and the floor is
blocking t from seeing u. It must be that t cannot see
any point in [u, r].

Figure 6: Visualization of Lemma 4.

We obtain an upper bound of 4 by showing that it
is impossible to shatter 5 half guards in a monotone
polygon. The upper bound proof is obtained by break-
ing the problem up into different cases. Unfortunately,
every viewpoint, when considered by itself without
placing any other viewpoints, can be placed when
there are 5 guards. However, depending on the loca-
tion of the guards, certain viewpoint combinations are
impossible. We provide a few cases below. Consider
a monotone polygon with 5 guards: {A,B,C,D,E}
such that A.x ≤ B.x ≤ C.x ≤ D.x ≤ E.x.
Case 1: Let {A,C} be on the floor (resp. ceiling)

and {B,D} be on the opposite side. The position
of E does not matter (with respect to the ceiling or
floor). We show that it is impossible to place the
points vp(BCE) and vp(ADE). Note that vp(BCE)
and vp(ADE) must be to the right of, or on the same
vertical line, as E.

Case 1a: If vp(BCE) is on the ceiling to the left of
vp(ADE), or on same line as vp(ADE), then consider
how B must be blocked from vp(ADE). The B guard
cannot be blocked from vp(ADE) using the ceiling be-
cause of Lemma 2 where s = B, t = D,u = vp(BCE)

and v = vp(ADE). The floor must then be used
to block B from vp(ADE). By Lemma 3, using
o = A, p = B, q = vp(ADE), the A guard would
not be able to see vp(ADE). Therefore, B cannot
be blocked from vp(ADE). This case is illustrated in
Figure 7.
Case 1b: If vp(ADE) is on the ceiling to the left

of vp(BCE), or on same line, then consider how C is
blocked from seeing vp(ADE). This case is illustrated
in Figure 8. Similar to the previous argument, if C is
blocked from seeing vp(ADE) using the floor, then by
Lemma 4 using s = A, t = C, u = vp(ADE), v =
vp(BCE), C cannot see vp(BCE). If the ceiling
blocks C from seeing vp(ADE), then by Lemma 3
using o = A, p = C, q = vp(ADE), A is blocked from
seeing vp(ADE).

Figure 7: Visualization of Case 1a.

Figure 8: Visualization of Case 1b.

Case 1c: If vp(BCE) is on floor to the left of
vp(ADE), or on same line as vp(ADE), then con-
sider how D must be blocked from vp(BCE). If
the ceiling blocks D from seeing vp(BCE), then
D does not see vp(ADE) by Corollary 4.1 when
t = D,u = vp(BCE), v = vp(ADE). If the floor
blocks D from seeing vp(BCE), then by Lemma 3
with o = C, p = D, q = vp(BCE), C cannot see
vp(BCE).
Case 1d: If vp(ADE) is on floor to the left of

vp(BCE), or on same line as vp(ADE), then consider
how B is blocked from vp(ADE). If the floor blocks
B from vp(ADE), then by Lemma 3 with o = A, p =
B, q = vp(ADE), A does not see vp(ADE). If the
ceiling blocks B from vp(ADE), then by Corollary 4.1
with t = B, u = vp(ADE), v = vp(BCE), B does not
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see vp(BCE).
Therefore, {A,C} and {B,D} cannot be on opposite

sides of the polygon. We provide 1 more case.
Case 2: In this case, {A,E} are on the floor (resp.

ceiling) and {B,C,D} are on the opposite side. In
this case, it is impossible to place both vp(BDE) and
vp(ACD).

Case 2a: The viewpoint vp(ACD) is on the ceiling
to the left of vp(BDE) or on same line as vp(BDE).
We consider how C is blocked from vp(BDE). We
can’t block C from vp(BDE) with the ceiling by
Lemma 2, where s = C, t = D,u = vp(ACD), v =
vp(BDE). If we try to block C from vp(BDE) using
the floor, we end up blocking B from vp(BDE) by
Lemma 3 with o = B, p = C, q = vp(BDE)).

Figure 9: Visualization of Case 2a.

Case 2b: The viewpoint vp(BDE) is on the ceiling
to the left of vp(ACD), or on same line as vp(ACD).
By Lemma 2 with s = B, t = C, u = vp(BDE), v =
vp(ACD), we must use the floor to block B from
vp(ACD). However, if we use the floor to block B
from vp(ACD), then by Lemma 3 with o = A, p =
B, q = vp(ACD), the A guard is blocked from seeing
vp(ACD).
Case 2c: The viewpoint vp(ACD) on floor to the

left of vp(BDE). In this case, we consider how B is
blocked from vp(ACD). If the ceiling blocks B from
vp(ACD), then by Corollary 4.1 with t = B, u =
vp(ACD), v = vp(BDE), B does not see vp(BDE).
If the floor blocks B from vp(ACD), then by Lemma
3 with o = A, p = B, q = vp(ACD), the A guard does
not see vp(ACD).

Figure 10: Visualization of Case 2c.

Case 2d: The viewpoint vp(BDE) is on floor to
the left of vp(ACD). In this case, consider how C is
blocked from seeing vp(BDE). If the floor blocks C
from seeing vp(BDE), then by Lemma 3 with o =
B, p = C, q = vp(BDE), B would not see vp(BDE).
If the ceiling blocks C from vp(BDE), then by Corol-
lary 4.1 with t = C, u = vp(BDE), v = vp(ACD), C
would not see vp(ACD).

These cases are just a few examples of how to show
the VC dimension of a monotone polygon with half
guards is exactly 4. The 25 = 32 cases that we consider
are the following: {A,C} are on the same side and
{B,D} are on the opposite side (4 cases), {A,E} are
on some side and {B,C,D} are on the opposite side (2
cases), {C,E} are on the same side and {A,B,D} are
on the opposite side (2 cases), there are any 4 guards
that are on the same side (12 cases), {A,B} are on
the same side and {C,D} are on the opposite side (4
cases), {A,D} are on the same side and {B,C} are
on the opposite side (4 cases), {B,E} are on the same
side and {A,C,D} are on the opposite side (2 cases),
and {A,B,C} are on the same side and {D,E} are
on the opposite side (2 cases).

These cases give us the following theorem.

Theorem 5 The VC dimension of half guarding a
monotone polygon is exactly 4.

4 Conclusions

We show the VC dimension exactly for several vari-
ants of half guarding in the art gallery problem. The
VC dimension for half guarding a terrain is 2 or 3 de-
pending on the assumption of whether or not guards
and viewpoints can occupy the same space. The VC
dimension for monotone polygons with half guards is
exactly 4.

Open problem 6 What is the VC dimension of half-
guarding other variants of the art gallery problem, for
example: simple polygons, spiral polygons, orthogonal
polygons, etc?
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