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Abstract

Let Ak(n) denote the simplicial complex of (k + 1)-
crossing-free subsets of edges in ([72’]). Here k,n € N
and n > 2k+1. Jonsson (2005) proved that (neglecting
the short edges that cannot be part of any (k + 1)-
crossing), Ag(n) is a shellable sphere of dimension
k(n — 2k —1) — 1, and conjectured it to be polytopal.
Despite considerable effort, the only values of (k, n)
for which the conjecture is known to hold are n < 2k+3
(Pilaud and Santos, 2012) and (2, 8) (Bokowski and Pi-
laud, 2009). Using ideas from rigidity theory we realize
Ag(n) as a polytope for (k,n) € {(2,9), (2, 10),(3,10)}.
We also realize it as a simplicial fan for all n < 13 and
arbitrary k, except the pairs (3,12) and (3,13).

1 The multiassociahedron

Triangulations of the convex n-gon P (n > 2) are the
facets of an abstract simplicial complex with vertex
set ([g]) and defined by taking as simplices all the non-
crossing sets of diagonals. This simplicial complex,
ignoring the boundary edges {4, + 1}, is a polytopal
sphere of dimension n — 4 dual to the associahedron.
(Here and all throughout the paper, indices for vertices
of the n-gon are regarded modulo n). A similar com-
plex can be defined if we forbid crossings of more than
a certain number k of edges (assuming n > 2k + 1),
instead of forbidding pairwise crossings.

Definition 1 Two disjoint pairs {i,j},{k,l} € ([Z]),
with i < j and k <, of([;]) cross ifi <k <j<lor
k <i<l<j. That is, if they cross as diagonals of a
convex n-gon. A k-crossing is a subset of k elements
of ([’2’]) such that every pair cross. A subset of ([g]) is
(k+1)-free if it doesn’t contain any (k+ 1)-crossing. A
k-triangulation is a maximal (k + 1)-free set. We call
Aj(n) the simplicial complex consisting of (k + 1)-free
sets of diagonals, whose facets are the k-triangulations.

Diagonals of length at most k (with length measured
cyclically) cannot participate in any (k + 1)-crossing.
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Thus, it makes sense to define the reduced complex
Ai(n) obtained from Ag(n) by deleting them. We call
Ar(n) the multiassociahedron or k-associahedron.

It was proved in [14, 9] that every k-triangulation of
the n-gon has exactly k(2n — 2k — 1) diagonals. That
is, Ag(n) is pure of dimension k(2n — 2k — 1) — 1.
Jonsson [11] further proved that the reduced version
Ar(n) is a shellable sphere of dimension k(n — 2k —
1) — 1, and conjectured it to be the normal fan of a
polytope. See [15, 16, 19] for additional information.

Conjecture 2 ([11]) Ay (n) is a polytopal sphere for
every n > 2k +1; that is, there is a simplicial polytope
of dimension k(n — 2k — 1) — 1 with () — kn vertices

whose lattice of proper faces is isomorphic to Ay (n).

Conjecture 2 is easy to prove for n < 2k + 3 [16].
The only additional case for which Jonsson’s conjec-
ture is known to hold is k = 2 and n = 8 [2]. In
some additional cases Aj(n) has been realized as a
complete simplicial fan, but it is open whether this
fan is polytopal. This includes the cases n < 2k 44
[1], k=2 and n <13 [13], and k =3 and n < 11 [1].

Interest in the polytopality of Ay (n) also comes from
cluster algebras and Coxeter combinatorics. Let w €
W be an element in a Coxeter group W and let @) be
a word of a certain length N. Assume that () contains
as a subword a reduced expression for w. The subword
complex of @) and w is the simplicial complex with
vertex set [N] and with faces the subsets of positions
that can be deleted from @ and still contain a reduced
expression for w. Knutson and Miller [12, Theorem 3.7
and Question 6.4] proved that every subword complex
is either a shellable ball or sphere, and they asked
whether all spherical subword complexes are polytopal.
It was later proved by Stump [19, Theorem 2.1] that
Ak(n) is a spherical subword complex for the Coxeter
system A, _or_1 and, moreover, it is universal: every
other spherical subword complex of type A appears
as a link in some Ay (n) [17, Proposition 5.6]. Hence,
Conjecture 2 is equivalent to a positive answer in type
A to the question of Knutson and Miller.

2 Realizing a simplicial complex as a polytope

If A is a pure simplicial complex with vertex set V of
dimension D—1 (its facets have size D) realizing it as a
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polytope is the same as finding a vector configuration
V = {v;}iev C RP on which A yields a complete
simplicial fan, and then proving the fan to be a regular
triangulation of V. See [8, Section 9.5] for details.

To prove that an embedding is a simplicial fan we
use a version of [8, Corollary 4.5.20] which says that
in order for a vector configuration ¥ C RP to embed
A as a simplicial fan the following Interior Cocircuit
Property (ICoP) is necessary and almost sufficient:

(ICoP) For every facet T of A the vectors {v;; : {i,j} €

T} are independent, and for every two adjacent
facets T and T the linear dependence among the
vectors {vj; : {i,7} € T1 U T} has the same sign
for the two elements in Ty \ Ty and Ty \ ;.

We apply this to the complex Ag(n), for which
Vc ([’2’]) and D = k(n — 2k — 1). Each facet is a k-
triangulation and two facets are adjacent if and only if
the k-triangulations differ by a flip, defined as follows:

Proposition 3 (Flips [16, Section 5]) For every
edge f of a k-triangulation T with length greater than
k, there is a unique edge e € ([g]) such that

TAfe, f}:=T\{f}U{e}
is another k-triangulation.

Once we have the complete fan, regularity is equiva-
lent to the feasibility of a system of linear inequalities.
We check this with a version of [18, Theorem 3.7],
which in turn is related to [8, Proposition 5.2.6(i)].

In some proofs we also use the following fact:

Proposition 4 (Short cycles [5, Cor. 2.9]) All
links of dimension 1 in Ag(n) are cycles of length < 5.

3 Rigidity
Let p = (p1,...,pn) be a set of n points in R¢, la-

belled by [n]. Their bar-and-joint rigidity matriz is
the following () x nd matrix:

P1—PpP2 Pp2—DP1 0
P1—P3 0 0
Rp):=|pi—pn 0 ... DPu—m
0 P2 —P3 ... 0
0 0 Pn — Pn—1

The shape of the matrix is as follows: there is a row
for each pair {i,j} € ([g])7 so rows can be considered
labeled by edges in the complete graph K,,. Then,
there are n blocks of columns, one for each point p;
and with d columns in each block; in the row of an
edge {4,j} (or {j,i}) only the blocks of vertices 7 and

j ae nonzero, and they contain respectively the vectors
p; —p; and p; — p;. Put differently, the matrix can
be interpreted as a “directed incidence matrix” of the
complete graph K, except instead of having a single
+1 and —1 for each edge-vertex incidence we have
the d-dimensional vectors p; — p; and p; — p;. For an
EC ([72’]) we denote by R(p)|g the restriction of R(p)
to the rows or elements indexed by E.

Definition 5 Let E C ([g]) be a subset of edges of
K, (equivalently, of rows of R(p)). We say that FE,
or the corresponding subgraph of K,, is self-stress-
free or independent if the rows of R(p)|g are linearly
independent, and rigid or spanning if they are linearly
spanning (that is, they have the same rank as the
whole matrix R(p)).

That is, self-stress-free and rigid graphs are, respec-
tively, the independent and spanning sets in the linear
matroid of rows of R(p). We call this matroid the
bar-and-joint rigidity matroid of p and denote it R(p).

The number k(2n — 2k — 1) = 2kn — (2’“2“) of edges
in a k-triangulation happens to coincide with the rank
of R(p) (or of R(p)) when p is a set of n points in
general position in R?*. This suggest to try to use
these matrices to try to embed Ag(n) as a simplicial
fan. Or, more generally, we can use any of the following
two other versions of rigidity, based on matrices of
the same shape, size, and rank as R(p), and which
fit into the framework of abstract rigidity matroids of
dimension 2k on n elements.

e The hyperconnectivity matroid of p € R%, denoted
H(p), is the matroid of rows of

D2 —P1 0 . 0 0

P3 0 —P1 e 0 0
Hp):=|p, O o ... O —p1

0 P3 —p2 ... 0 0

0 0 0 cvv Pn —Pn-1

e For points q = (q1, - - -, ¢») in R? and a parameter
d € N, the d-dimensional cofactor rigidity matroid
of the points ¢, ..., q,, which we denote Cy4(q),
is the matroid of rows of

C12 —C12 0 e 0
Ci3 0 —Ci13 ... 0
Ca(q) :== | c1n 0 0 .. —Cin, ,
0 Co3 —C23 0
0 0 0 —Cnim
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where the vector c;; € R? associated to ¢; =
(zi,y:) and q; = (x4,y;) is

cij = (i — 2)" ", (yi — yj) (@i — )2,

ey (yz — yj)d_l) .

In [3] we prove that these three rigidity theories
coincide when the points p or q are chosen along the
moment curve (for bar-and-joint and hyperconnectiv-
ity) and the parabola (for cofactor). More precisely:

Theorem 6 ([3]) Let t; < ---
parameters. Let

Di = (1,ti, ce ,tgl_l) € Rd,

ph= (ti,t2,...,td) e RY,
q; = (t“tzg) (S R2.

< t, € R be real

Then, the matrices H(p1,...,pn), R(p},...,p,) and
C(q1,-.-,qn) can be obtained from one another mul-
tiplying on the right by a regular matrix and then
multiplying its rows by some positive scalars. In par-
ticular, the three matrices define the same oriented
matroid.

Definition 7 We call the matrix H(p,...,py) in the
statement of Theorem 6 the polynomial d-rigidity
matrix with parameters t¢1,...,t,. We denote it
Py(t1,...,t,), and denote Py(t1,...,t,) the corre-
sponding matroid.

Summing up: for any choice of points p € R% or
q € R? in general position, the rows of the matrices
R(p), H(p) or Cax(q) are a real vector configuration
V C R?*" of rank k(2n — 2k — 1). Moreover, if p is
chosen along the moment curve or q along the parabola
the three theories give linearly equivalent embeddings.
The question we address is whether using these vectors
as rays we get that the reduced k-associahedron Ay (n)
is a polytopal fan.

An alternative to realize the fan is “bipartizing” the
k-triangulations, as follows:

Definition 8 The bipartization of a graph G =
([n], E) is the graph G' = ([n] U [n])',E’) where
E' ={(i,n+1—-j):{i,j} € E,i <j}. The (reduced)
bipartization of a k-triangulation is its bipartization
restricted to [n —k — 1] U [n — k — 1.

Reduced bipartizations of k-triangulations have
2kn — 3k% — 2k edges, which is exactly the rank of the
hyperconnectivity matroid in dimension k restricted
to bipartite graphs. So, we can also use as a vector
configuration the rows of H(p) for p C R* in general
position, restricted or not to the moment curve.

Conjecture 9 1. k-triangulations of the n-gon are
bases in the bar-and-joint rigidity matroid of
generic points along the moment curve in dimen-
sion 2k.

2. Bipartized k-triangulations of the n-gon are bases
in the bar-and-joint rigidity matroid of generic
points along the moment curve in dimension k.

4 Main results

First, as evidence for Conjecture 9 we prove the case
k=2

Theorem 10 ([5, Thm. 1.4]) 2-triangulations are
isostatic in dimension 4 for generic positions along the
moment curve.

One may be tempted to change “generic” to “arbi-
trary” in Conjecture 9, but we show that this stronger
conjecture fails in the worst possible way; for every
k > 3 and n > 2k + 3, the standard positions along
the moment curve make some k-triangulation not a
basis:

Theorem 11 ([5, Thm. 1.6], [6, Th. 1.13])

1. The graph Kg — {16, 37,49} is a 3-triangulation
of the n-gon, but it is dependent in the rigidity
matroid Cg for any configuration q C R? if the
lines through qi1qs, q3q7, and q4q9 meet at a point.
This occurs, for example, if we take the nine points
on the parabola with t; = 1.

2. The bipartization of the same graph is dependent
in Hs if the cross-ratio between the hyperplanes
(12,23;24,25) equals (2'4',2'3';1'2',2'5"), as hap-
pens with points along the moment curve with
t=1(1,3,4,5,7,1,3,4,5,7).

In fact, for n < 2k + 3 we can characterize exactly
what positions realize Ag(n) as a fan, for cofactor
rigidity (and, in particular, for the other two forms of
rigidity with positions along the moment curve), and
for bipartite rigidity along the moment curve. In the
case n = 2k + 3 this is governed by the geometry of
the star-polygon formed by the k-relevant edges. More
precisely, we call “big side” of each relevant edge (that
is, edge of k+1) in a (2k 4 3)-gon the open half-plane
containing k + 1 vertices:

Theorem 12 ([5, Thm. 3.14], [6, Thm. 5.6])

1. For n = 2k + 2, any choice of q1, . .., gor42 € R?
in convex position for cofactor rigidity, and any
choice of t; < -++ < tpq1,t) < - <ty in
the moment curve for bipartite rigidity, realizes
Ak(2k +2) as a polytopal fan.

2. Let q1,qo, ..., qoke3 € R? be in convex position.
Ay (2k + 3) is realized by Cai(q) as a complete
fan if and only if the big sides of all relevant edges
have a non-empty intersection.
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3. Let t; < --- < lpqo,t) <--- < t},, be parame-
ters for the vertices of Kjy9 42 in the moment
curve. Ap(2k + 3) is realized by Pi(t) as a com-
plete fan if and only if one of the following holds:

o k=2.

e k= 3 and the cross-ratio (1,3;4,5) is greater
than (4',3';1',5").

e k >4 and the cross-ratio (i1,19;13,k + 2) is
greater than ((k+3 —i1), (k+2—1i2);(k+
3— ’ig)/7 (k + 2)/), for any iy,i9,i3 with 2 <
’i1<i2<i3*1§k.

Here, by cross-ratio between four points, we mean
the cross-ratio between their parameters t.

Interestingly, from parts (2) and (3) of this result it
is quite easy to show that no positions of points along
the moment curve realize Ay (n), for several values of
k and n:

Corollary 13 ([5, Thm. 1.7], [6, Thm. 1.14])

1. If k > 3,n > 2k + 6 then no chgice of points
q C R? in convex position realizes Ay (n) as a fan
via cofactor rigidity.

2. If k=3,n>12, or k > 4,n > 2k + 4, then no
choice of points t € R2("=k=1) in the moment
curve realizes Ag(n) as a fan via cofactor rigidity.

Observe that this is not a counter-example to Con-
jecture 9, which is only about linear independence of
the vectors generating each facet of the fan, not about
the fan itself.

Finally, for every n < 13 we have experimen-
tally found positions along the moment curve real-
izing Ap(n) as a fan, except in the cases (n,k) €
{(3,12), (3,13)} which are forbidden by Corollary 13.
For many of them we have also realized the polytope:

Theorem 14 ([5, Lem. 4.13 & 4.14], [6, Thm.
5.10]) Let t = {1,2,...,n} be standard positions for
the parameters. Then:

1. Standard positions realize Ay(n) as the normal
fan of a polytope for Py(t) with the original graph
ifn <9, and for Py(t) with the bipartized graph
ifn <8.

2. The non-standard positions t =
(-2,1,2,3,4,5,6,7,9,20) for P,(t) with the
original graph, and the near-lexicographic
positions t; = t, = 26=1)? for Py(t) with the
bipartized graph, realize Ay(10) as the normal
fan of a polytope.

3. Standard positions realize Ay(n) as a complete
fan for all n < 13 with both forms of rigidity.

4. Equispaced positions along the circle with the
original graph realize Ay(n) as a fan for (k,n) €
{(3,10), (3,11), (4,12), (4,13)}. The first one is
polytopal.

5. The positions t = (0, 1,31,32,42,67,100) at both
sides with bipartite rigidity realize A3(11) as a
fan.
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