A fitting problem in three dimension

Pablo Pérez-Lantero* ${ }^{\star 1}$ Carlos Seara ${ }^{\dagger 2}$, and Jorge Urrutia ${ }^{\ddagger 3}$
${ }^{1}$ Departamento de Matemática y Ciencia de la Computación, Universidad de Santiago de Chile
${ }^{2}$ Departament de Matemàtiques, Universitat Politècnica de Catalunya
${ }^{3}$ Instituto de Matemáticas de la Universidad Nacional Autónoma de México

Abstract

Let P be a set of n points in \mathbb{R}^{3} in general position, and let $R C H(P)$ be the rectilinear convex hull of P. In this paper we use an efficient $O\left(n \log ^{2} n\right)$ time and $O(n \log n)$ space algorithm to compute and maintain the set of vertices of the rectilinear convex hull of P as we rotate \mathbb{R}^{3} around the Z-axis to obtain an improvement of the time complexity in an optimization algorithm for a fitting problem in \mathbb{R}^{3}.

1 Introduction

Let P be a set of n points in \mathbb{R}^{3} in general position, and let $R C H(P)$ be the rectilinear convex hull of P. An open octant in \mathbb{R}^{3} is the intersection of the three open halfspaces, whose supporting planes are perpendicular to the X-axis, to the Y-axis, and to the Z-axis, respectively. An octant is called P-free if it contains no elements of P. The rectilinear convex hull of a set of points in \mathbb{R}^{3} is defined as

$$
R C H(P)=\mathbb{R}^{3} \backslash \bigcup_{W \in \mathcal{W}(P)} W
$$

where $\mathcal{W}(P)$ is the set of P-free open octants of \mathbb{R}^{3}.
Theorem 1 [2] The rectilinear convex hull of P, $R C H(P)$, can be computed in optimal $O(n \log n)$ time and $O(n)$ space.

If we do rotations of the X - and Y-axis around the Z axis by an angle θ in the clockwise direction, instead of octants we get θ-octants, and the corresponding rectilinear convex hulls generated $R C H_{\theta}(P)$. Thus, an open θ-octant is the intersection of three open halfspaces whose supporting planes are orthogonal to three mutually orthogonal lines through the origin X_{θ},

[^0]Y_{θ}, and Z. An open θ-octant is called P-free if it contains no elements of P. The θ-rectilinear convex hull $R C H_{\theta}(P)$ of a point set P is defined as
$$
R C H_{\theta}(P)=\mathbb{R}^{3} \backslash \bigcup_{W \in \mathcal{W}_{\theta}(P)} W
$$
where $\mathcal{W}_{\theta}(P)$ denotes the set of all P-free open θ octants. The points of P are labeled $\left\{p_{1}, \ldots, p_{n}\right\}$ from top to bottom by decreasing z-coordinates.

Theorem 2 [2] Maintaining the elements of P that belong to the boundary of $R C H_{\theta}(P)$ as $\theta \in[0,2 \pi]$ can be done in $O\left(n \log ^{2} n\right)$ time and $O(n \log n)$ space. The algorithm stores the set of angular intervals in $[0, \pi]$ at which the points are θ-active.

2 A 2-fitting problem in 3D

The oriented 2 -fitting problem [1] is defined as follows: Given a point set P in \mathbb{R}^{3}, find a plane Π, called the splitting plane of P (assume that Π is parallel to the $X Y$-plane), and four parallel halfplanes $\pi_{1}, \pi_{2}, \pi_{3}, \pi_{4}$, called the supporting halfplanes of P, such that:

1. Π splits P into two non-empty subsets P_{1} and P_{2}, i.e., $\left\{P_{1}, P_{2}\right\}$ is the bipartition of P produced by the splitting-plane Π.
2. $\pi_{1}, \pi_{2}, \pi_{3}, \pi_{4}$ are orthogonal to Π, π_{1} and π_{2} lie above Π, and π_{3} and π_{4} lie below Π, each one of $\pi_{1}, \pi_{2}, \pi_{3}, \pi_{4}$ containing at least a point of P. The point sets P_{1} and P_{2} are contained between π_{1} and π_{2}, and π_{3} and π_{4}, respectively. See Figure 1 .
3. The maximum of ϵ_{1} and ϵ_{2} is minimized, where ϵ_{1} is the error tolerance of P_{1} with respect to π_{1} and π_{2}, and ϵ_{2} is the error tolerance of P_{2} with respect to π_{3} and π_{4}.
4. The solution for the 2 -fitting problem is given by the mid halfplane of the supporting halfplanes π_{1} and π_{2} and the mid halfplane of the supporting halfplanes π_{3} and π_{4}.

The error tolerances ϵ_{1} and ϵ_{2} are defined by the Euclidean distances between the two parallel supportinghalfplanes on either sides of Π. The problem consists in getting the bipartition $\left\{P_{1}, P_{2}\right\}$ of P such that $\max \left\{\epsilon_{1}, \epsilon_{2}\right\}$ is minimum. It is a min-max problem. See Figure 1. If the orientation of the splitting plane

Figure 1: The splitting-plan plane Π and the two pairs of parallel supporting-halfplanes.
is fixed, the problem can be solved in $O\left(n^{2}\right)$ time and $O(n)$ space, as proved by Díaz-Báñez et al. [1]. We will design an algorithm that bounds the solution for this case: when the orientation of the splitting plane is fixed. The complexities are smaller than those in the algorithm Díaz-Báñez et al. [1]. In our algorithm, instead of doing a sequence of bipartitions of P, we will maintaining $R C H_{\theta}(P)$ as we rotate the space around the Z-axis, and compute optimal solutions in each of the linear number of events at which the $R C H_{\theta}(P)$ changes for $\theta \in[0, \pi]$.

We assume that the splitting-plane Π is parallel to the $X Y$ plane, all the points of P are above the $X Y$ plane and sorted with respect to the z-coordinate, where p_{1} is the point with the largest z-coordinate, and p_{n} is the point with the smallest z-coordinate. We also assume that the Z-axis passes through p_{1}, and thus, its coordinates do not change as we rotate \mathbb{R}^{3} around the Z-axis, and p_{1} and p_{n} are always in the boundary of $R C H_{\theta}(P)$.

Suppose that the supporting halfplanes have normal unit vectors. Thus, the 2 -fitting problem reduces to computing four parallel supporting halfplanes $\pi_{1}, \pi_{2}, \pi_{3}, \pi_{4}$ of a bipartition $\left\{P_{1}, P_{2}\right\}$ of P, and therefore, to computing four points in the boundary of $R C H_{\theta}(P)$, for some $\theta \in[0, \pi]$. See Figure 2 .

We will discretize the problem by considering the angular sub-intervals of $[0, \pi]$ such that in each subinterval the points in the boundary of $R C H_{\theta}(P)$ do not change. By Theorem 2, their number is linear in n.

Then, we will show how to optimize the error tolerance at the endpoints of each of these sub-intervals.

Recall that a point $p \in P$ is said to be θ-active if at least one of the p^{θ}-octants is P-free. The definition of a θ-active point considering an octant can be easily adapted to considering a dihedral (two perpendicular and axis-parallel planes) as follows:

Definition 3 Let $p \in P$ and $\{s, t\} \quad \in$ $\{\{1,2\},\{3,4\},\{5,6\},\{7,8\}\}$. We say that p is a $\theta_{\{s, t\}}$-active point if p is θ-active for both the s-th and t-th octants.

For example, a point $p \in P$ is $\theta_{\{1,2\}}$-active if p is θ-active for both the first and second octants. In fact, the union of the first and second p^{θ}-octants is a dihedral, which is P-free and its edge goes through p.

Lemma 4 The boundary of the projection of $R C H_{\theta}(P)$ on the $Z Y_{\theta}$ plane is formed by the points of P which are $\theta_{\{1,2\} \text {-active, }} \theta_{\{3,4\}}$-active, $\theta_{\{5,6\}}$-active, and $\theta_{\{7,8\}}$-active in the direction defined by the $Z Y_{\theta}$ plane in the unit circle S^{1}. Thus, the four staircases of the boundary of the projection of $R C H_{\theta}(P)$ on the $Z Y_{\theta}$ plane are as follows: the first staircase is formed by the $\theta_{\{1,2\}}$-active points, the second staircase is formed by the $\theta_{\{3,4\}}$-active points, the third staircase is formed by the $\theta_{\{5,6\}}$-active points, and the fourth staircase is formed by the $\theta_{\{7,8\} \text {-active points. }}^{\text {a }}$.

Proof. The proof follows by observing that any point p in the interior of the projection of $R C H_{\theta}(P)$ on the $Z Y_{\theta}$ plane is dominated by at least one point for each of the four quadrants, and it is so because p is not $\theta_{\{s, t\}^{-}}$ active for any $\{s, t\} \in\{\{1,2\},\{3,4\},\{5,6\},\{7,8\}\}$, see Figure 2, Furthermore, the rightmost point in the projection on the $Z Y_{\theta}$ is both $\theta_{\{1,2\}}$-active and $\theta_{\{7,8\}^{-}}$ active, and the leftmost point is both $\theta_{\{3,4\}}$-active and $\theta_{\{5,6\}}$-active.

Let $p_{\text {left }}^{\theta}$ and $p_{\text {right }}^{\theta}$ denote, respectively, the leftmost and rightmost points of the projection of P on the plane $Z Y_{\theta}$. For any angle θ, let L_{θ} be the list consisting of the $\theta_{\{1,2\}}$-active points and the $\theta_{\{5,6\}}$-active points of P, sorted in decreasing order of their z-coordinate. By simplicity, we assume with loss of generality that no two elements of P have the same z-coordinate. Let $m=O(n)$ denote the number of elements of L_{θ} and let $z_{1}, z_{2}, \ldots, z_{m}$ denote the sorted elements of L_{θ}. The $\theta_{\{1,2\}}$-active points of L_{θ}, those of the first staircase of $R C H_{\theta}(P)$ are colored red, and the $\theta_{\{5,6\}}$-active points, those of the third staircase of $R C H_{\theta}(P)$, are colored blue (see the red and blue staircases of Figure 2 containing as vertices the red and blue elements of L_{θ}, respectively). We can represent L_{θ} as a standard binary search tree, with extra $O(1)$-size data at each node, such that inserting/deleting an element can be done in $O(\log n)$ time, and also the following queries can all be answered in $O(\log n)$ time:

Figure 2: Projection of the $R C H_{\theta}(P)$ on the $Z Y_{\theta}$ plane. The bipartition plane Π is determined by the $\theta_{\{1,2\}}$-active point p and the $\theta_{\{5,6\}}$-active point q, which determine the error tolerance functions $\epsilon_{1}^{\theta, \Pi}$ and $\epsilon_{2}^{\theta, \Pi}$.
(1) Given an element in the list, retrieve its position.
(2) Given a position $j \in\{1,2, \ldots, m\}$, retrieve the rightmost red element in the sublist $z_{1}, z_{2}, \ldots, z_{j}$.
(3) Given a position $j \in\{1,2, \ldots, m\}$, retrieve the leftmost blue element in the sublist $z_{j}, z_{j+1}, \ldots, z_{m}$.

By simplicity in the explanation, we will assume that $p_{\text {left }}^{\theta}$ is always above $p_{\text {right }}^{\theta}$ in the z-coordinate order. Hence, any bipartition plane Π must have $p_{\text {left }}^{\theta}$ above it and $p_{\text {right }}^{\theta}$ below it. Furthermore, Π is determined by the closest $\theta_{\{1,2\}}$-active point p above Π and the closest $\theta_{\{5,6\}}$-active point q below Π (see Figure 2). This is why the list L_{θ} is for the $\theta_{\{1,2\}}$-active and $\theta_{\{5,6\}}$-active points. If the assumption is not considered, then our arguments must include a similar list with the $\theta_{\{3,4\}}{ }^{-}$ active and $\theta_{\{7,8\}}$-active points for the situations in which $p_{\text {left }}^{\theta}$ is below $p_{\text {right }}^{\theta}$.

The next facts are the keys for the algorithm:

1. Since each point of P can change its condition of being $\theta_{\{s, t\}}$-active a constant number of times, then the total number of times there is a change in some of the four staircases, hence in L_{θ}, is $O(n)$. Thus, we have $O(n)$ intervals of $[0, \pi]$ with no change in the staircases. We can then define the sequence Θ of the $N=O(n)$ angles $0=\theta_{0}<$ $\theta_{1}<\theta_{2}<\cdots<\theta_{N}=\pi$, such that for each interval $\left[\theta_{i}, \theta_{i+1}\right), i=0,1, \ldots, N-1$ the list L_{θ} do not change.
2. For an angle $\theta \in[0, \pi]$ and a point p of P, let p^{θ} be the projection of p on $Z Y_{\theta}$, and let α_{p} be the angle formed by the X-axis and the line
through the origin O and the projection of p on the $X Y$-plane. For any point q, let $d(q, Z)$ denote the distance from q to the Z-axis. We have that $d\left(p^{\theta}, Z\right)=d(p, Z) \cdot \cos \left(\alpha_{p}-\theta\right)$, which is a function depending only on θ since $d(p, Z)$ and α_{p} are constants.
3. For a fixed angle $\theta \in[0, \pi]$, a bipartition of P by a plane Π induces a partition of the list $L_{\theta}=$ $z_{1}, z_{2}, \ldots, z_{m}$ into two sublists: $z_{1}, z_{2}, \ldots, z_{k}$ with the elements above Π, and $z_{k+1}, z_{k+2}, \ldots, z_{m}$ with the elements below Π. And vice versa, every such a partition of L_{θ} into two lists induces a plane Π that bipartitions P. Let the $\theta_{\{1,2\}}$-active point p and the $\theta_{\{5,6\}}$-active point q be the witnesses of this bipartition. That is, p is the rightmost red element in $z_{1}, z_{2}, \ldots, z_{k}$, and q is the leftmost blue element in $z_{k+1}, z_{k+2}, \ldots, z_{m}$ (see Figure 22). The error tolerances for this bipartition, denoted $\epsilon_{1}^{\theta, \Pi}$ and $\epsilon_{2}^{\theta, \Pi}$, are given by the distances

$$
\begin{aligned}
\epsilon_{1}^{\theta, \Pi} & =d\left(p_{\text {left }}^{\theta}, Z\right)+d\left(p^{\theta}, Z\right) \text { and } \\
\epsilon_{2}^{\theta, \Pi} & =d\left(p_{\text {right }}^{\theta}, Z\right) \pm d\left(q^{\theta}, Z\right)
\end{aligned}
$$

where the + or - depends on whether q^{θ} is to the left or right of the Z-axis in the $Z Y_{\theta}$ plane. Note that when moving Π upwards, the functions $\epsilon_{1}^{\theta, \Pi}$ and $\epsilon_{2}^{\theta, \Pi}$ are non-increasing and nondecreasing, respectively. Hence, to find an optimal Π for a given angle θ, we can perform a binary search in the range $\left\{k_{1}, k_{1}+1, \ldots, k_{2}-1\right\} \subset$ $\{1,2, \ldots, m-1\}$ to find an optimal partition $z_{1}, z_{2}, \ldots, z_{k}$ and z_{k+1}, \ldots, z_{m} of L_{θ}, where k_{1} and k_{2} are the positions of $p_{\text {left }}^{\theta}$ and $p_{\text {right }}^{\theta}$ in L_{θ}, respectively.
The binary search does the following steps for a given value $k \in\left\{k_{1}, k_{1}+1, \ldots, k_{2}-1\right\}$: Consider a bipartition plane Π induced by the partition $z_{1}, z_{2}, \ldots, z_{k}$ and z_{k+1}, \ldots, z_{m} of L_{θ}, and find the witnesses points p and q, each in $O(\log n)$ time by using the queries of the tree supporting L_{θ}. Then, compute $\epsilon_{1}^{\theta, \Pi}$ and $\epsilon_{2}^{\theta, \Pi}$ in constant time. If $\epsilon_{1}^{\theta, \Pi}=\epsilon_{2}^{\theta, \Pi}$, then stop the search. Otherwise, if $\epsilon_{1}^{\theta, \Pi}<\epsilon_{2}^{\theta, \Pi}$ (resp. $\epsilon_{1}^{\theta, \Pi}>\epsilon_{2}^{\theta, \Pi}$), then we increase (resp. decrease) the value of k accordingly with the binary search and repeat. We return the value of k visited by the search that minimizes $\max \left\{\epsilon_{1}^{\theta, \Pi}, \epsilon_{2}^{\theta, \Pi}\right\}$. This search makes $O(\log n)$ steps, each in $O(\log n)$ time, thus it costs $O\left(\log ^{2} n\right)$ time.
4. Let θ_{i} and θ_{i+1} be two consecutive angles of the sequence Θ. It may happen for some angle $\theta \in$ $\left(\theta_{i}, \theta_{i+1}\right)$, and some bipartitioning plane Π, that

$$
\epsilon_{1}^{\theta, \Pi}=\epsilon_{2}^{\theta, \Pi}<
$$

$$
<\max \left\{\epsilon_{1}^{\theta_{i}, \Pi}, \epsilon_{2}^{\theta_{i}, \Pi}\right\}, \max \left\{\epsilon_{1}^{\theta_{i+1}, \Pi}, \epsilon_{2}^{\theta_{i+1}, \Pi}\right\}
$$

That is, the objective function improves inside the interval $\left[\theta_{i}, \theta_{i+1}\right)$ for the angle θ. In fact, this can be happen for a linear number of angles. For example, suppose that $p_{\text {left }}^{\theta}$ and $p_{\text {right }}^{\theta}$ are sufficiently far from the Z-axis, and the rest of the elements of L_{θ} are suffiently close to the Z-axis. Further suppose that the function $d\left(p_{\text {left }}^{\theta}, Z\right)$ is increasing, and function $d\left(p_{\text {right }}^{\theta}, Z\right)$ is decreasing in $\left(\theta_{i}, \theta_{i+1}\right)$, and that they coincide for some some $\theta \in\left(\theta_{i}, \theta_{i+1}\right)$. For any bipartition plane Π, we will have that the tolerance functions $\epsilon_{1}^{\theta, \Pi} \approx d\left(p_{\text {left }}^{\theta}, Z\right)$ and $\epsilon_{2}^{\theta, \Pi} \approx d\left(p_{\text {right }}^{\theta}, Z\right)$ are increasing and decreasing, respectively, and they will also coincide for some angle $\theta \in\left(\theta_{i}, \theta_{i+1}\right)$.

Considering all the facts above, we next describe an approximation algorithm running in subquadratic time for solving the 2-fitting problem in 3D, in the case that the orientation of the splitting-plane is fixed. The approximation consists in computing the best bipartition plane for a discrete set of critical angles. That is, we find such a plane for the $O(n)$ angles of the sequence Θ. Our algorithm leaves apart the fact number 4 above, which would imply to consider a quadratic number of critical angles.

2-fitting algorithm in 3D. Fixed orientation of THE SPLITTING-PLANE

1. By Theorems 1 and 2, and Lemma 4, we compute in $O\left(n \log ^{2} n\right)$ time and $O(n \log n)$ space, for all points $p \in P$ the angular intervals $I(p)$ in which p is $\theta_{\{s, t\}}$-active for some $\{s, t\} \in$ $\{\{1,2\},\{3,4\},\{5,6\},\{7,8\}\}$. We have $O(1)$ intervals for each p, each one associated with the corresponding $\{s, t\}$. For each p, we intersect pairwise the intervals of $I(p)$ to find the set $I^{\prime}(p)$ of $O(1)$ intervals such that for each interval we have: p is only $\theta_{\{1,2\} \text {-active; } p \text { is both } \theta_{\{1,2\}} \text {-active }}$ and $\theta_{\{7,8\}}$-active (i.e., p is $p_{\text {right }}^{\theta}$); p is only $\theta_{\{5,6\}^{-}}$ active; or p is both $\theta_{\{3,4\}}$-active and $\theta_{\{5,6\}}$-active (i.e., p is $p_{\text {left }}^{\theta}$).
2. We sort in $O(n \log n)$ time the endpoints of $I^{\prime}(p)$ for all $p \in P$ to obtain the sequence Θ of the $O(n)$ angles $0=\theta_{0}<\theta_{1}<\theta_{2}<\cdots<\theta_{N}=\pi$, such that the list L_{θ} do not change for all $\theta \in\left[\theta_{i}, \theta_{i+1}\right)$, $i=0,1, \ldots, N-1$. Thinking on sweeping the sequence Θ with the angle θ from left to right, we associate with each θ_{i} the point p_{i} of P and the interval of $I^{\prime}\left(p_{i}\right)$ with endpoint θ_{i}. Then, for each θ_{i} we know which point of P changes some $\theta_{\{s, t\}}$-active condition, and the precise conditions it changes.
3. We sweep Θ from left to right: As a initial step, for $\theta=0$, we compute the projection of $R C H_{0}(P)$
on the plane $Z Y_{0}$, the points $p_{\text {left }}^{0}$ and $p_{\text {right }}^{0}$ in the projection, and build the list L_{0} (as a tree) with the $\theta_{\{1,2\}}$-active and $\theta_{\{5,6\}}$-active points in $O(n \log n)$ time.
In the next steps, for $i=1,2, \ldots, N$, we have $\theta=\theta_{i}$ and we update $p_{\text {left }}^{\theta}$ and $p_{\text {right }}^{\theta}$ in constant time from $p_{\text {left }}^{\theta_{i-1}}, p_{\text {right }}^{\theta_{i-1}}$, and the point p_{i} associated with θ_{i}, and update L_{θ} by inserting/deleting p_{i} in $O(\log n)$ time. The color of p_{i} (red or blue) is known according to the $\theta_{\{s, t\}}$-active condition that p_{i} changes.
In each step, the initial one and the subsequent ones, we perform the binary search in L_{θ} in $O\left(\log ^{2} n\right)$ time to find the bipartition plane Π that minimizes $\epsilon_{\theta}=\max \left\{\epsilon_{1}^{\theta, \Pi}, \epsilon_{2}^{\theta, \Pi}\right\}$. At the end, we return the angle θ of Θ (joint with its corresponding optimal plane Π) such that ϵ_{θ} is the smallest over all angles of Θ.

It is clear that the running time of the above algorithm is $O\left(n \log ^{2} n\right)$. We note that the quality of the solution can be improved in terms of ε-approximations. Indeed, for $\varepsilon>0$, if we split the interval $[0, \pi]$ into sub-intervals of length $\delta=\varepsilon / D$, where D is an upper bound of the absolute value of the first derivative of the functions $\epsilon_{1}^{\theta, \Pi}$ and $\epsilon_{2}^{\theta, \Pi}$ for all θ, and apply the binary search also for θ being the endpoints of these sub-intervals, then the solution $A P R O X$ given by the algorithm is such that $A P R O X-O P T \leq \delta D$, where $O P T$ denotes the optimal solution. This implies that $O P T \leq A P R O X \leq O P T+\varepsilon$. The running time will be $O\left(n \log ^{2} n+(\pi / \delta) \log ^{2} n\right)=$ $O\left(n \log ^{2} n+(D \pi / \varepsilon) \log ^{2} n\right)$. A value for D can be twice the maximum distance of a point of P to the Z-axis, and can be considered a constant by scaling the point set P. Hence, the final running time is $O\left(n \log ^{2} n+\varepsilon^{-1} \log ^{2} n\right)$.

Therefore, we arrive to the following theorem:
Theorem 5 For any $\varepsilon>0$, an upper bound of the optimal solution of the oriented 2-fitting problem in $3 D$, with absolute error at most ε, can be obtained in $O\left(n \log ^{2} n+\varepsilon^{-1} \log ^{2} n\right)$ time and $O(n \log n)$ space if the orientation of the splitting plane is fixed.

References

[1] J. M. Díaz-Bañez, M. A. López, M. Mora, C. Seara, and I. Ventura. Fitting a two-joint orthogonal chain to a point set. Computational Geometry: Theory and Applications, 44(3), (2011), pp. 135-147.
[2] P. Pérez-Lantero, C. Seara and J. Urrutia. Rectilinear convex hull of points in 3D. 14th Latin American Theoretical Informatics Symposium, São Paulo, Brazil, January 5-8, (2021), LNCS 12118, pp. 296307, doi.org/10.1007/978-3-030-61792-9-24

[^0]: *Email: pablo.perez.l@usach.cl. Partially supported by project DICYT 042332PL Vicerrectoría de Investigación, Desarrollo e Innovación USACH (Chile).
 \dagger Email: carlos.seara@upc.edu. Partially supported by projects PID2019-104129GB-I00/ MCIN/ AEI/ 10.13039/501100011033.
 \ddagger Email: urrutia@matem.unam.mx. Supported by PAPIIT IN102117 Programa de Apoyo a la Investigación e Innovación Tecnológica, UNAM.

