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Abstract

Let P be a set of n points in R3 in general position,
and let RCH(P ) be the rectilinear convex hull of P .
In this paper we use an efficient O(n log2 n) time and
O(n log n) space algorithm to compute and maintain
the set of vertices of the rectilinear convex hull of
P as we rotate R3 around the Z-axis to obtain an
improvement of the time complexity in an optimization
algorithm for a fitting problem in R3.

1 Introduction

Let P be a set of n points in R3 in general position,
and let RCH(P ) be the rectilinear convex hull of
P . An open octant in R3 is the intersection of the
three open halfspaces, whose supporting planes are
perpendicular to the X-axis, to the Y -axis, and to the
Z-axis, respectively. An octant is called P -free if it
contains no elements of P . The rectilinear convex hull
of a set of points in R3 is defined as

RCH(P ) = R3 \
⋃

W∈W(P )

W,

where W(P ) is the set of P -free open octants of R3.

Theorem 1 [2] The rectilinear convex hull of P ,
RCH(P ), can be computed in optimal O(n log n) time
and O(n) space.

If we do rotations of the X- and Y -axis around the Z-
axis by an angle θ in the clockwise direction, instead
of octants we get θ-octants, and the corresponding
rectilinear convex hulls generated RCHθ(P ). Thus,
an open θ-octant is the intersection of three open
halfspaces whose supporting planes are orthogonal to
three mutually orthogonal lines through the origin Xθ,
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Yθ, and Z. An open θ-octant is called P -free if it
contains no elements of P . The θ-rectilinear convex
hull RCHθ(P ) of a point set P is defined as

RCHθ(P ) = R3 \
⋃

W∈Wθ(P )

W,

where Wθ(P ) denotes the set of all P -free open θ-
octants. The points of P are labeled {p1, . . . , pn} from
top to bottom by decreasing z-coordinates.

Theorem 2 [2] Maintaining the elements of P that
belong to the boundary of RCHθ(P ) as θ ∈ [0, 2π] can
be done in O(n log2 n) time and O(n log n) space. The
algorithm stores the set of angular intervals in [0, π]
at which the points are θ-active.

2 A 2-fitting problem in 3D

The oriented 2-fitting problem [1] is defined as follows:
Given a point set P in R3, find a plane Π, called the
splitting plane of P (assume that Π is parallel to the
XY -plane), and four parallel halfplanes π1, π2, π3, π4,
called the supporting halfplanes of P , such that:

1. Π splits P into two non-empty subsets P1 and P2,
i.e., {P1, P2} is the bipartition of P produced by
the splitting-plane Π.

2. π1, π2, π3, π4 are orthogonal to Π, π1 and π2 lie
above Π, and π3 and π4 lie below Π, each one of
π1, π2, π3, π4 containing at least a point of P . The
point sets P1 and P2 are contained between π1

and π2, and π3 and π4, respectively. See Figure 1.

3. The maximum of ε1 and ε2 is minimized, where
ε1 is the error tolerance of P1 with respect to π1

and π2, and ε2 is the error tolerance of P2 with
respect to π3 and π4.

4. The solution for the 2-fitting problem is given by
the mid halfplane of the supporting halfplanes π1

and π2 and the mid halfplane of the supporting
halfplanes π3 and π4.
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The error tolerances ε1 and ε2 are defined by the Eu-
clidean distances between the two parallel supporting-
halfplanes on either sides of Π. The problem con-
sists in getting the bipartition {P1, P2} of P such that
max{ε1, ε2} is minimum. It is a min-max problem.
See Figure 1. If the orientation of the splitting plane
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Figure 1: The splitting-plan plane Π and the two pairs
of parallel supporting-halfplanes.

is fixed, the problem can be solved in O(n2) time and
O(n) space, as proved by Dı́az-Báñez et al. [1]. We
will design an algorithm that bounds the solution for
this case: when the orientation of the splitting plane
is fixed. The complexities are smaller than those in
the algorithm Dı́az-Báñez et al. [1]. In our algorithm,
instead of doing a sequence of bipartitions of P , we will
maintaining RCHθ(P ) as we rotate the space around
the Z-axis, and compute optimal solutions in each of
the linear number of events at which the RCHθ(P )
changes for θ ∈ [0, π].

We assume that the splitting-plane Π is parallel
to the XY plane, all the points of P are above the
XY plane and sorted with respect to the z-coordinate,
where p1 is the point with the largest z-coordinate,
and pn is the point with the smallest z-coordinate. We
also assume that the Z-axis passes through p1, and
thus, its coordinates do not change as we rotate R3

around the Z-axis, and p1 and pn are always in the
boundary of RCHθ(P ).

Suppose that the supporting halfplanes have nor-
mal unit vectors. Thus, the 2-fitting problem re-
duces to computing four parallel supporting halfplanes
π1, π2, π3, π4 of a bipartition {P1, P2} of P , and there-
fore, to computing four points in the boundary of
RCHθ(P ), for some θ ∈ [0, π]. See Figure 2.

We will discretize the problem by considering the
angular sub-intervals of [0, π] such that in each sub-
interval the points in the boundary of RCHθ(P ) do
not change. By Theorem 2, their number is linear in n.

Then, we will show how to optimize the error tolerance
at the endpoints of each of these sub-intervals.

Recall that a point p ∈ P is said to be θ-active if at
least one of the pθ-octants is P -free. The definition of
a θ-active point considering an octant can be easily
adapted to considering a dihedral (two perpendicular
and axis-parallel planes) as follows:

Definition 3 Let p ∈ P and {s, t} ∈
{{1, 2}, {3, 4}, {5, 6}, {7, 8}}. We say that p is a
θ{s,t}-active point if p is θ-active for both the s-th
and t-th octants.

For example, a point p ∈ P is θ{1,2}-active if p is
θ-active for both the first and second octants. In
fact, the union of the first and second pθ-octants is a
dihedral, which is P -free and its edge goes through p.

Lemma 4 The boundary of the projection of
RCHθ(P ) on the ZYθ plane is formed by the points of
P which are θ{1,2}-active, θ{3,4}-active, θ{5,6}-active,
and θ{7,8}-active in the direction defined by the ZYθ
plane in the unit circle S1. Thus, the four staircases
of the boundary of the projection of RCHθ(P ) on
the ZYθ plane are as follows: the first staircase is
formed by the θ{1,2}-active points, the second stair-
case is formed by the θ{3,4}-active points, the third
staircase is formed by the θ{5,6}-active points, and the
fourth staircase is formed by the θ{7,8}-active points.

Proof. The proof follows by observing that any point
p in the interior of the projection of RCHθ(P ) on the
ZYθ plane is dominated by at least one point for each of
the four quadrants, and it is so because p is not θ{s,t}-
active for any {s, t} ∈ {{1, 2}, {3, 4}, {5, 6}, {7, 8}},
see Figure 2. Furthermore, the rightmost point in the
projection on the ZYθ is both θ{1,2}-active and θ{7,8}-
active, and the leftmost point is both θ{3,4}-active and
θ{5,6}-active. �

Let pθleft and pθright denote, respectively, the leftmost
and rightmost points of the projection of P on the
plane ZYθ. For any angle θ, let Lθ be the list consisting
of the θ{1,2}-active points and the θ{5,6}-active points
of P , sorted in decreasing order of their z-coordinate.
By simplicity, we assume with loss of generality that
no two elements of P have the same z-coordinate. Let
m = O(n) denote the number of elements of Lθ and let
z1, z2, . . . , zm denote the sorted elements of Lθ. The
θ{1,2}-active points of Lθ, those of the first staircase
of RCHθ(P ) are colored red, and the θ{5,6}-active
points, those of the third staircase of RCHθ(P ), are
colored blue (see the red and blue staircases of Figure 2,
containing as vertices the red and blue elements of
Lθ, respectively). We can represent Lθ as a standard
binary search tree, with extra O(1)-size data at each
node, such that inserting/deleting an element can be
done in O(log n) time, and also the following queries
can all be answered in O(log n) time:
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Figure 2: Projection of the RCHθ(P ) on the ZYθ
plane. The bipartition plane Π is determined by
the θ{1,2}-active point p and the θ{5,6}-active point

q, which determine the error tolerance functions εθ,Π1

and εθ,Π2 .

(1) Given an element in the list, retrieve its position.

(2) Given a position j ∈ {1, 2, . . . ,m}, retrieve the
rightmost red element in the sublist z1, z2, . . . , zj .

(3) Given a position j ∈ {1, 2, . . . ,m}, re-
trieve the leftmost blue element in the sublist
zj , zj+1, . . . , zm.

By simplicity in the explanation, we will assume that
pθleft is always above pθright in the z-coordinate order.

Hence, any bipartition plane Π must have pθleft above

it and pθright below it. Furthermore, Π is determined by
the closest θ{1,2}-active point p above Π and the closest
θ{5,6}-active point q below Π (see Figure 2). This is
why the list Lθ is for the θ{1,2}-active and θ{5,6}-active
points. If the assumption is not considered, then our
arguments must include a similar list with the θ{3,4}-
active and θ{7,8}-active points for the situations in

which pθleft is below pθright.

The next facts are the keys for the algorithm:

1. Since each point of P can change its condition
of being θ{s,t}-active a constant number of times,
then the total number of times there is a change
in some of the four staircases, hence in Lθ, is
O(n). Thus, we have O(n) intervals of [0, π] with
no change in the staircases. We can then define
the sequence Θ of the N = O(n) angles 0 = θ0 <
θ1 < θ2 < · · · < θN = π, such that for each
interval [θi, θi+1), i = 0, 1, . . . , N − 1 the list Lθ
do not change.

2. For an angle θ ∈ [0, π] and a point p of P , let
pθ be the projection of p on ZYθ, and let αp
be the angle formed by the X-axis and the line

through the origin O and the projection of p on
the XY -plane. For any point q, let d(q, Z) denote
the distance from q to the Z-axis. We have that
d(pθ, Z) = d(p, Z)·cos(αp−θ), which is a function
depending only on θ since d(p, Z) and αp are
constants.

3. For a fixed angle θ ∈ [0, π], a bipartition of P
by a plane Π induces a partition of the list Lθ =
z1, z2, . . . , zm into two sublists: z1, z2, . . . , zk with
the elements above Π, and zk+1, zk+2, . . . , zm with
the elements below Π. And vice versa, every such
a partition of Lθ into two lists induces a plane Π
that bipartitions P . Let the θ{1,2}-active point
p and the θ{5,6}-active point q be the witnesses
of this bipartition. That is, p is the rightmost
red element in z1, z2, . . . , zk, and q is the leftmost
blue element in zk+1, zk+2, . . . , zm (see Figure 2).
The error tolerances for this bipartition, denoted
εθ,Π1 and εθ,Π2 , are given by the distances

εθ,Π1 = d(pθleft, Z) + d(pθ, Z) and

εθ,Π2 = d(pθright, Z)± d(qθ, Z),

where the + or − depends on whether qθ is to
the left or right of the Z-axis in the ZYθ plane.
Note that when moving Π upwards, the func-
tions εθ,Π1 and εθ,Π2 are non-increasing and non-
decreasing, respectively. Hence, to find an optimal
Π for a given angle θ, we can perform a binary
search in the range {k1, k1 + 1, . . . , k2 − 1} ⊂
{1, 2, . . . ,m − 1} to find an optimal partition
z1, z2, . . . , zk and zk+1, . . . , zm of Lθ, where k1

and k2 are the positions of pθleft and pθright in Lθ,
respectively.

The binary search does the following steps for
a given value k ∈ {k1, k1 + 1, . . . , k2 − 1}: Con-
sider a bipartition plane Π induced by the par-
tition z1, z2, . . . , zk and zk+1, . . . , zm of Lθ, and
find the witnesses points p and q, each in O(log n)
time by using the queries of the tree supporting
Lθ. Then, compute εθ,Π1 and εθ,Π2 in constant

time. If εθ,Π1 = εθ,Π2 , then stop the search. Oth-

erwise, if εθ,Π1 < εθ,Π2 (resp. εθ,Π1 > εθ,Π2 ), then
we increase (resp. decrease) the value of k ac-
cordingly with the binary search and repeat. We
return the value of k visited by the search that
minimizes max{εθ,Π1 , εθ,Π2 }. This search makes
O(log n) steps, each in O(log n) time, thus it costs
O(log2 n) time.

4. Let θi and θi+1 be two consecutive angles of the
sequence Θ. It may happen for some angle θ ∈
(θi, θi+1), and some bipartitioning plane Π, that

εθ,Π1 = εθ,Π2 <
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< max
{
εθi,Π1 , εθi,Π2

}
,max

{
ε
θi+1,Π
1 , ε

θi+1,Π
2

}
.

That is, the objective function improves inside
the interval [θi, θi+1) for the angle θ. In fact, this
can be happen for a linear number of angles. For
example, suppose that pθleft and pθright are suffi-
ciently far from the Z-axis, and the rest of the
elements of Lθ are suffiently close to the Z-axis.
Further suppose that the function d(pθleft, Z) is

increasing, and function d(pθright, Z) is decreas-
ing in (θi, θi+1), and that they coincide for some
some θ ∈ (θi, θi+1). For any bipartition plane
Π, we will have that the tolerance functions
εθ,Π1 ≈ d(pθleft, Z) and εθ,Π2 ≈ d(pθright, Z) are in-
creasing and decreasing, respectively, and they
will also coincide for some angle θ ∈ (θi, θi+1).

Considering all the facts above, we next describe
an approximation algorithm running in subquadratic
time for solving the 2-fitting problem in 3D, in the
case that the orientation of the splitting-plane is fixed.
The approximation consists in computing the best
bipartition plane for a discrete set of critical angles.
That is, we find such a plane for the O(n) angles of
the sequence Θ. Our algorithm leaves apart the fact
number 4 above, which would imply to consider a
quadratic number of critical angles.

2-fitting algorithm in 3D. Fixed orientation
of the splitting-plane

1. By Theorems 1 and 2, and Lemma 4, we com-
pute in O(n log2 n) time and O(n log n) space,
for all points p ∈ P the angular intervals I(p)
in which p is θ{s,t}-active for some {s, t} ∈
{{1, 2}, {3, 4}, {5, 6}, {7, 8}}. We have O(1) in-
tervals for each p, each one associated with the
corresponding {s, t}. For each p, we intersect
pairwise the intervals of I(p) to find the set I ′(p)
of O(1) intervals such that for each interval we
have: p is only θ{1,2}-active; p is both θ{1,2}-active

and θ{7,8}-active (i.e., p is pθright); p is only θ{5,6}-
active; or p is both θ{3,4}-active and θ{5,6}-active

(i.e., p is pθleft).

2. We sort in O(n log n) time the endpoints of I ′(p)
for all p ∈ P to obtain the sequence Θ of the O(n)
angles 0 = θ0 < θ1 < θ2 < · · · < θN = π, such
that the list Lθ do not change for all θ ∈ [θi, θi+1),
i = 0, 1, . . . , N − 1. Thinking on sweeping the
sequence Θ with the angle θ from left to right,
we associate with each θi the point pi of P and
the interval of I ′(pi) with endpoint θi. Then, for
each θi we know which point of P changes some
θ{s,t}-active condition, and the precise conditions
it changes.

3. We sweep Θ from left to right: As a initial step,
for θ = 0, we compute the projection of RCH0(P )

on the plane ZY0, the points p0
left and p0

right in
the projection, and build the list L0 (as a tree)
with the θ{1,2}-active and θ{5,6}-active points in
O(n log n) time.

In the next steps, for i = 1, 2, . . . , N , we have
θ = θi and we update pθleft and pθright in constant

time from p
θi−1

left , p
θi−1

right, and the point pi associated
with θi, and update Lθ by inserting/deleting pi
in O(log n) time. The color of pi (red or blue)
is known according to the θ{s,t}-active condition
that pi changes.

In each step, the initial one and the subsequent
ones, we perform the binary search in Lθ in
O(log2 n) time to find the bipartition plane Π

that minimizes εθ = max{εθ,Π1 , εθ,Π2 }. At the end,
we return the angle θ of Θ (joint with its corre-
sponding optimal plane Π) such that εθ is the
smallest over all angles of Θ.

It is clear that the running time of the above algo-
rithm is O(n log2 n). We note that the quality of the
solution can be improved in terms of ε-approximations.
Indeed, for ε > 0, if we split the interval [0, π] into
sub-intervals of length δ = ε/D, where D is an up-
per bound of the absolute value of the first derivative
of the functions εθ,Π1 and εθ,Π2 for all θ, and apply
the binary search also for θ being the endpoints of
these sub-intervals, then the solution APROX given
by the algorithm is such that APROX −OPT ≤ δD,
where OPT denotes the optimal solution. This im-
plies that OPT ≤ APROX ≤ OPT + ε. The
running time will be O(n log2 n + (π/δ) log2 n) =
O(n log2 n + (Dπ/ε) log2 n). A value for D can be
twice the maximum distance of a point of P to the
Z-axis, and can be considered a constant by scaling
the point set P . Hence, the final running time is
O(n log2 n+ ε−1 log2 n).

Therefore, we arrive to the following theorem:

Theorem 5 For any ε > 0, an upper bound of the
optimal solution of the oriented 2-fitting problem in
3D, with absolute error at most ε, can be obtained in
O(n log2 n + ε−1 log2 n) time and O(n log n) space if
the orientation of the splitting plane is fixed.
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