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Abstract

Let R and B be two disjoint point sets in the plane
with |R| = |B| =n. Let M = {(r;,b;),i =1,2,...,n}
be a perfect matching that matches points of R with
points of B and maximizes Y ., [|[r; — b;||, the total
Euclidean distance of the matched pairs. In this paper,
we prove that there exists a point o of the plane (the
center of M) such that ||r; —ol|+||b; —ol| < V2 ||ri—bi]|
for all i € {1,2,...,n}.

1 Introduction

Let R and B be two disjoint point sets in the plane
with |R| = |B| = n, n > 1. The points in R are red,
and those in B are blue. A matching of RU B is a
partition of R U B into n pairs such that each pair
consists of a red and a blue point. A point p € R
and a point ¢ € B are matched if and only if the
(unordered) pair (p, ¢) is in the matching. For every
p,q € R?, we use pq to denote the segment connecting
p and ¢, and ||p — ¢|| to denote its length, which is
the Euclidean norm of the vector p — q. Let B(pq)
denote the disk with diameter equal to ||p — ¢||, that
is centered at the midpoint p# of the segment pq.
For any matching M, we use B to denote the set
of the disks associated with the matching, that is,
Bam = {B(pg) : (p,q) € M}.

In this note, we consider the maz-sum matching M,
as the matching that maximizes the total Euclidean
distance of the matched points. As our main result,
we prove the following theorem:

Theorem 1 There exists a point o of the plane such
that for all i € {1,2,...,n} we have:

lri = ol + 1bs — ol < V2 |lrs — bi]|.

Fingerhut (see Eppstein [3]), motivated by a problem
in designing communication networks (see Fingerhut
et al. [4]), conjectured that given a set P of 2n un-
colored points in the plane and a max-sum matching
{(a;,b;),i =1,...,n} of P, there exists a point o of
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the plane, not necessarily a point of P, such that

lla;—o||+||bi—o|| < —b;|| forallie{1,...,n},

(1)

y
2.
V3

where 2/v/3 ~ 1.1547.

Bereg et al. [2] obtained an approximation to this
conjecture. They proved that for any point set P of 2n
uncolored points in the plane and a max-sum matching
M ={(a;,b;),i =1,...,n} of P, all disks in B have
a common intersection, implying that any point o in
the common intersection satisfies

llas = ol| + [b: — ol < V2 |la; — bill,

where /2 ~ 1.4142.

Recently, Barabanshchikova and Polyanskii [1] con-
firmed the conjecture of Fingerhut.

The statement of Equation is equivalent to stat-
ing that the intersection &(aiby) N E(azbs) N -+ N
E(anby) is not empty, where £(pq) is the region of
the plane bounded by the ellipse with foci p and g,
and major axis length (2/v/3) ||p — q|| (see [3]).

In our context of bichromatic point sets, given p € R
and ¢ € B, let £(pqg) denote the region bounded by
the ellipse with foci p and ¢, and major axis length
V2 |[p—g||. That is, £(pg) = {z € R? : ||p— ||+ [|g —
z|| < V2 ||p— ¢||}. Then, the statement of Theorem
is equivalent to stating that the intersection £(r1b1) N
E(raby) N---NE(rpby) is not empty, for any max-sum
matching {(r;,b;),i =1,2,...,n} of RUB.

We note that the factor v/2 is tight. It suffices to
consider two red points and two blue points as vertices
of a square, so that each diagonal has vertices of the
same color. The center of the square is the only point
in common of the two ellipses induced by any max-sum
matching.

Hence, to prove Theorem [I] it suffices to consider
n < 3, by Helly’s Theorem. Let X7, X5,...,X,, be a
collection of n convex subsets of R, with n > d + 1.
Helly’s Theorem [5] asserts that if the intersection of
every d + 1 of these subsets is nonempty, then the
whole collection has a nonempty intersection. That is
why we prove our claim only for n < 3, since we are
considering n ellipses in R?. The arguments that we
give in this paper are a simplification and adaptation of
the arguments of Barabanshchikova and Polyanskii [I].
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Huemer et al. [6] proved that if M’ is any perfect
matching of R and B that maximizes the total squared
FEuclidean distance of the matched points, i.e., it maxi-
mizes 37, v uqr [P —gl|?, then all disks of Buy have a
point in common. With different techniques, the result
of Huemer et al. was extended to higher dimensions by
Pirahmad et al. [7]. As proved by Bereg et al. [2], the
disks of our max-sum matching M of RU B intersect
pairwise, a fact that will be used in this paper, but
the common intersection is not always possible.

2 Proof of main result

Let R and B be two disjoint point sets defined as
above, where |R| = |B| = n, n < 3, and let M be a
max-sum matching of RU B. Note that for every pair
(p,q) € M the disk B(pq) is inscribed in the ellipse
E(pq) (see Figure [1a), which implies B(pg) C £(pq).
Then, for n = 2 Theorem [I]is true because the disks
of M intersect pairwise [2, Proposition 2.1]. Trivially,
the theorem is also true for n = 1. Therefore, we
will prove in the rest of the paper that the theorem
is also true for n = 3, which will require elaborated
arguments.

Let n = 3, with R = {a,b,c¢} and B = {d', ¥, '},
and let M = {(a,d),(b,V),(c,c)} be a max-sum
matching of RU B.

For two points p,q € R?, let 7(pq) denote the ray
with apex p that goes through ¢, and for a real number
A > 1, let Ex(pg) be the region bounded by the ellipse
with foci p and ¢ and major axis length A||p — ¢|.
That is, Ex(pg) = {z € R? : [[p —zf| + llg — 2| <
Allp — ¢} Note that in our context £(pq) = & s5(pq),
and Ex(pq) C Ex(pq) for any N > A.

Assume by contradiction that &(aa’) N E(bY) N
E(ec’) = 0. Then, we can “inflate uniformly” &(aa’),
E(Y'), and E(ec’) until they have a common intersec-
tion. Formally, we can take the minimum A > V2 such
that Ex(aa’) N EA(BY) N Ex(ec’) is not empty, which
means that £x(aa’) NEA(BY ) NEN(ec’) is singleton. Let
o denote the point of Ey(aa’) NEX(BY) N Ex(cc).

Let £(aa’) denote the ray with apex o that bisects
r(oa) and r(oa’). Similarly, we define £(bb’) and £(cc).
Let t(aa’) denote the line through o tangent to £y (aa’),
oriented so that €y (aa’) is to its right. Similarly, we
define ¢(bb') and ¢(cc’). It is well known that given an
ellipse with foci p and ¢, and a line tangent at it at some
point o, the rays r(op) and r(oq) form equal angles
with the tangent line (see Figure [Ib). This implies
that rays £(aa’), £(bb"), and £(cc’) are perpendicular to
the tangent lines t(aa’), t(bb’), and t(cc’), respectively.
In other words, they are contained respectively in the
normal lines at point o.

Since &(aa’), E(bY'), and E(cc’) intersect pairwise
(and also none of them is contained inside other one),
we have that o belongs to the boundary of each of
Ex(aa’), Ex(bY'), and Ex(cc’). Then, Ex(aa’), Ex(bY),

Figure 1: (a) The ellipse £(pq) and the disk B(pgq). (b)
A line tangent to an ellipse forms equal angles with the
rays, whose apex is the tangency point, that go through
the foci. (c) Point o and the three ellipses.

and &) (cc’) intersect pairwise, and each pairwise in-
tersection contains interior points. This implies that
no two lines of t(aa’), t(bb’), and t(cc’) coincide. Fur-
thermore, the six directions (positive and negative)
of t(aa’), t(bt'), and t(cc’) alternate around o, which
implies that any two consecutive rays among £(aa’),
L(bb"), and £(cc’) counterclockwise around o, have ro-
tation angle strictly less than 7 (see Figure .

Let G = (RU B, F) be the bipartite graph such
that (p,q) € E if and only if p € R, ¢ € B, and
either (p,q) € {(a,a’), (b, V'), (¢c,c)} or 0 € B(pq). We
color the edges into two colors: We say that edge
(p,q) is black if (p,q) is an edge of the matching, that
is, (p,q) € {(a,a’), (b, V'), (c,c')}. Otherwise, we say
that (p,q) is white. Note that this color classification
is consistent, since we have that o ¢ B(pq) for all
edges (p,q) € {(a,a’),(b,b'), (¢, ')} because B(pq) is
contained in the interior of £x(pq) and o is in the
boundary of £x(pq).

The proof of the next lemma is included for com-
pleteness.

Lemma 2 ([1]) IfG has a cycle whose edges are color
alternating, then M is not a max-sum matching of
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RUB.

Proof. For a black edge (p,q) we have that ||p —
ol + |lg — ol| = Allp — ¢||. For a white edge (p,q) we
have that [|p — o + [[¢ — o] < Allp — ¢||, since o0 €
B(pq) and B(pq) is contained in the interior of £x(pq).
Let (r1,b1,72,b2, ..., "m, bm,Tm+1 = 71) be a cycle of
length m, where r1,...,7,, € R and by,...,b,, € B,
and its edges are color alternating. Suppose w.l.o.g.
that the edge (r1,b1) is black, which means that the
edges (r1,b1),...,(Tm,bm) € M are all black, and
the edges (b1,72), .-, (b, Tmt1) € M are all white.
Then, we have that:

1 m
len—bll—xz (Ilrs = oll + [[bi — o]}
i=1

=5 > (b = ol + [|ri1 — o)
i=1

m

<> b = rigal]-
=1

—_

Hence, by replacing in M the black edges of the cycle
by the white edges, we will obtain a matching of larger
total sum. O

The above alternating cycle idea in the problems
about intersections of geometric objects induced by
matchings appeared in the proof of Theorem 3 in the
paper of Pirahmad et al. [7].

Lemma 3 Fach vertex of G has at least one white
edge incident to it.

Proof. Consider the blue vertex a’. Assume w.l.0.g.
that o is the origin of coordinates, and a’ is in the
positive direction of the y-axis. We have that Zaoa’ <
/2 because o ¢ B(aa'), then assume w.l.o.g. that a is
in the interior of the first quadrant Q1. Let Q2, @3,
and Q)4 be the second, third, and fourth quadrants,
respectively. Further assume w.l.0.g. that rays ¢(aa’),
£(bl’), and £(cc’) appear in this order counterclockwise.
Assume by contradiction that there is no white edge
incident to a’. This implies that b, ¢ belong to the inte-
rior of Q1 U Q2. If ¢ € @2, then the counterclockwise
rotation angle from #(cc’) to £(aa’) is larger than .
Hence, c € Q. If b € 1, then the counterclockwise
rotation angle from £(aa’) to £(bb’), or that from £(bb’)
to £(cc’), is larger than w. Hence b € Q2. Further-
more, if both & and ¢’ belong to Q1 U Q2, then the
counterclockwise rotation angle from ¢(bb’) to ¢(cc’)
is larger than 7. Hence, at least one of ¥/, ¢’ belong
to the interior of Q3 U Q4. That is, ¥’ € Q3 and/or
¢ € Q4. The proof is divided now into three cases:
Case 1: b € Q3 and ¢’ € Q4. Since b € Q2 and
¢ € Qq, the angle Zboc’ > /2, which implies that
o € B(bc') (see Figure 2a). That is, edge (b,c) is

Y ¢
(a)
a/
[o]
c/
b /,/”// Y
< o P
T 7
8 4 2

b/
(b)

Figure 2: Proof of Lemma Black edges are in normal
line style, and white edges in dashed style.

white. Similarly, edge (¥, ¢) is also white. The colors
of the edges of the cycle (b, ¢, ¢,b’,b) alternate, then
Lemma, [2] implies a contradiction.

Case 2: bV € Q3 and ¢ ¢ Q4. Since the coun-
terclockwise rotation angle 6 from £(bb’) to £(cc) is
smaller than 7, we must have that ¢ € Q1. As in
Case 1, we have that edge (b, ¢) is white, given that
b € Qs and ¢ € Q1. Let B8 be the half of the angle
Zbob’, and v be the half of the angle Zcoc’ (see Fig-
ure 2b). Note that Zbob’ < 7/2 and Zcod' < 7/2 be-
cause o ¢ B(bb') and o ¢ B(cc'). We have that 3,v <
/4, which implies that Zboc' > 27 — f—~v—0 > 7/2.
Hence, edge (b,c') is also white. Again, the colors
of the edges of the cycle (b,c/,¢,V',b) alternate, and
Lemma, [2] implies a contradiction.

Case 3: b ¢ Q3 and ¢’ € Q4. The proof of this
case is analogous to that of Case 2.

The lemma thus follows. (|

Lemma (3| implies that the graph G has always a
cycle (of length four or six) whose edges are color
alternating. Hence, Lemma [2] implies a contradiction,
and we obtain that the max-sum matching M ensures
that £(aa’)NE(BY)NE(cc’) # 0. Therefore, Theoremll]
holds.
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