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Abstract

Let R and B be two disjoint point sets in the plane
with |R| = |B| = n. LetM = {(ri, bi), i = 1, 2, . . . , n}
be a perfect matching that matches points of R with
points of B and maximizes

∑n
i=1 ‖ri − bi‖, the total

Euclidean distance of the matched pairs. In this paper,
we prove that there exists a point o of the plane (the
center ofM) such that ‖ri−o‖+‖bi−o‖ ≤

√
2 ‖ri−bi‖

for all i ∈ {1, 2, . . . , n}.

1 Introduction

Let R and B be two disjoint point sets in the plane
with |R| = |B| = n, n ≥ 1. The points in R are red,
and those in B are blue. A matching of R ∪ B is a
partition of R ∪ B into n pairs such that each pair
consists of a red and a blue point. A point p ∈ R
and a point q ∈ B are matched if and only if the
(unordered) pair (p, q) is in the matching. For every
p, q ∈ R2, we use pq to denote the segment connecting
p and q, and ‖p − q‖ to denote its length, which is
the Euclidean norm of the vector p − q. Let B(pq)
denote the disk with diameter equal to ‖p− q‖, that
is centered at the midpoint p+q

2 of the segment pq.
For any matching M, we use BM to denote the set
of the disks associated with the matching, that is,
BM = {B(pq) : (p, q) ∈M}.

In this note, we consider the max-sum matchingM,
as the matching that maximizes the total Euclidean
distance of the matched points. As our main result,
we prove the following theorem:

Theorem 1 There exists a point o of the plane such
that for all i ∈ {1, 2, . . . , n} we have:

‖ri − o‖+ ‖bi − o‖ ≤
√

2 ‖ri − bi‖.

Fingerhut (see Eppstein [3]), motivated by a problem
in designing communication networks (see Fingerhut
et al. [4]), conjectured that given a set P of 2n un-
colored points in the plane and a max-sum matching
{(ai, bi), i = 1, . . . , n} of P , there exists a point o of
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the plane, not necessarily a point of P , such that

‖ai−o‖+‖bi−o‖ ≤
2√
3
‖ai−bi‖ for all i ∈ {1, . . . , n},

(1)
where 2/

√
3 ≈ 1.1547.

Bereg et al. [2] obtained an approximation to this
conjecture. They proved that for any point set P of 2n
uncolored points in the plane and a max-sum matching
M = {(ai, bi), i = 1, . . . , n} of P , all disks in BM have
a common intersection, implying that any point o in
the common intersection satisfies

‖ai − o‖+ ‖bi − o‖ ≤
√

2 ‖ai − bi‖,

where
√

2 ≈ 1.4142.
Recently, Barabanshchikova and Polyanskii [1] con-

firmed the conjecture of Fingerhut.
The statement of Equation (1) is equivalent to stat-

ing that the intersection E(a1b1) ∩ E(a2b2) ∩ · · · ∩
E(anbn) is not empty, where E(pq) is the region of
the plane bounded by the ellipse with foci p and q,
and major axis length (2/

√
3) ‖p− q‖ (see [3]).

In our context of bichromatic point sets, given p ∈ R
and q ∈ B, let E(pq) denote the region bounded by
the ellipse with foci p and q, and major axis length√

2 ‖p− q‖. That is, E(pq) = {x ∈ R2 : ‖p−x‖+ ‖q−
x‖ ≤

√
2 ‖p− q‖}. Then, the statement of Theorem 1

is equivalent to stating that the intersection E(r1b1) ∩
E(r2b2)∩ · · · ∩ E(rnbn) is not empty, for any max-sum
matching {(ri, bi), i = 1, 2, . . . , n} of R ∪B.

We note that the factor
√

2 is tight. It suffices to
consider two red points and two blue points as vertices
of a square, so that each diagonal has vertices of the
same color. The center of the square is the only point
in common of the two ellipses induced by any max-sum
matching.

Hence, to prove Theorem 1 it suffices to consider
n ≤ 3, by Helly’s Theorem. Let X1, X2, . . . , Xn be a
collection of n convex subsets of Rd, with n ≥ d+ 1.
Helly’s Theorem [5] asserts that if the intersection of
every d + 1 of these subsets is nonempty, then the
whole collection has a nonempty intersection. That is
why we prove our claim only for n ≤ 3, since we are
considering n ellipses in R2. The arguments that we
give in this paper are a simplification and adaptation of
the arguments of Barabanshchikova and Polyanskii [1].
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Huemer et al. [6] proved that if M′ is any perfect
matching of R and B that maximizes the total squared
Euclidean distance of the matched points, i.e., it maxi-
mizes

∑
(p,q)∈M′ ‖p−q‖2, then all disks of BM′ have a

point in common. With different techniques, the result
of Huemer et al. was extended to higher dimensions by
Pirahmad et al. [7]. As proved by Bereg et al. [2], the
disks of our max-sum matching M of R ∪B intersect
pairwise, a fact that will be used in this paper, but
the common intersection is not always possible.

2 Proof of main result

Let R and B be two disjoint point sets defined as
above, where |R| = |B| = n, n ≤ 3, and let M be a
max-sum matching of R ∪B. Note that for every pair
(p, q) ∈ M the disk B(pq) is inscribed in the ellipse
E(pq) (see Figure 1a), which implies B(pq) ⊂ E(pq).
Then, for n = 2 Theorem 1 is true because the disks
of M intersect pairwise [2, Proposition 2.1]. Trivially,
the theorem is also true for n = 1. Therefore, we
will prove in the rest of the paper that the theorem
is also true for n = 3, which will require elaborated
arguments.

Let n = 3, with R = {a, b, c} and B = {a′, b′, c′},
and let M = {(a, a′), (b, b′), (c, c′)} be a max-sum
matching of R ∪B.

For two points p, q ∈ R2, let r(pq) denote the ray
with apex p that goes through q, and for a real number
λ ≥ 1, let Eλ(pq) be the region bounded by the ellipse
with foci p and q and major axis length λ‖p − q‖.
That is, Eλ(pq) = {x ∈ R2 : ‖p − x‖ + ‖q − x‖ ≤
λ‖p− q‖}. Note that in our context E(pq) = E√2(pq),
and Eλ(pq) ⊂ Eλ′(pq) for any λ′ > λ.

Assume by contradiction that E(aa′) ∩ E(bb′) ∩
E(cc′) = ∅. Then, we can “inflate uniformly” E(aa′),
E(bb′), and E(cc′) until they have a common intersec-
tion. Formally, we can take the minimum λ >

√
2 such

that Eλ(aa′) ∩ Eλ(bb′) ∩ Eλ(cc′) is not empty, which
means that Eλ(aa′)∩Eλ(bb′)∩Eλ(cc′) is singleton. Let
o denote the point of Eλ(aa′) ∩ Eλ(bb′) ∩ Eλ(cc′).

Let `(aa′) denote the ray with apex o that bisects
r(oa) and r(oa′). Similarly, we define `(bb′) and `(cc′).
Let t(aa′) denote the line through o tangent to Eλ(aa′),
oriented so that Eλ(aa′) is to its right. Similarly, we
define t(bb′) and t(cc′). It is well known that given an
ellipse with foci p and q, and a line tangent at it at some
point o, the rays r(op) and r(oq) form equal angles
with the tangent line (see Figure 1b). This implies
that rays `(aa′), `(bb′), and `(cc′) are perpendicular to
the tangent lines t(aa′), t(bb′), and t(cc′), respectively.
In other words, they are contained respectively in the
normal lines at point o.

Since E(aa′), E(bb′), and E(cc′) intersect pairwise
(and also none of them is contained inside other one),
we have that o belongs to the boundary of each of
Eλ(aa′), Eλ(bb′), and Eλ(cc′). Then, Eλ(aa′), Eλ(bb′),

p q

(a)

p q

o

(b)

t(aa′)

t(bb′)

t(cc′)

Eλ(aa′)

Eλ(bb′)

Eλ(cc′)

o

`(aa′)

`(bb′)

`(cc′)

(c)

Figure 1: (a) The ellipse E(pq) and the disk B(pq). (b)
A line tangent to an ellipse forms equal angles with the
rays, whose apex is the tangency point, that go through
the foci. (c) Point o and the three ellipses.

and Eλ(cc′) intersect pairwise, and each pairwise in-
tersection contains interior points. This implies that
no two lines of t(aa′), t(bb′), and t(cc′) coincide. Fur-
thermore, the six directions (positive and negative)
of t(aa′), t(bb′), and t(cc′) alternate around o, which
implies that any two consecutive rays among `(aa′),
`(bb′), and `(cc′) counterclockwise around o, have ro-
tation angle strictly less than π (see Figure 1c).

Let G = (R ∪ B,E) be the bipartite graph such
that (p, q) ∈ E if and only if p ∈ R, q ∈ B, and
either (p, q) ∈ {(a, a′), (b, b′), (c, c′)} or o ∈ B(pq). We
color the edges into two colors: We say that edge
(p, q) is black if (p, q) is an edge of the matching, that
is, (p, q) ∈ {(a, a′), (b, b′), (c, c′)}. Otherwise, we say
that (p, q) is white. Note that this color classification
is consistent, since we have that o /∈ B(pq) for all
edges (p, q) ∈ {(a, a′), (b, b′), (c, c′)} because B(pq) is
contained in the interior of Eλ(pq) and o is in the
boundary of Eλ(pq).

The proof of the next lemma is included for com-
pleteness.

Lemma 2 ([1]) IfG has a cycle whose edges are color
alternating, then M is not a max-sum matching of
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R ∪B.

Proof. For a black edge (p, q) we have that ‖p −
o‖ + ‖q − o‖ = λ‖p − q‖. For a white edge (p, q) we
have that ‖p − o‖ + ‖q − o‖ < λ‖p − q‖, since o ∈
B(pq) and B(pq) is contained in the interior of Eλ(pq).
Let (r1, b1, r2, b2, . . . , rm, bm, rm+1 = r1) be a cycle of
length m, where r1, . . . , rm ∈ R and b1, . . . , bm ∈ B,
and its edges are color alternating. Suppose w.l.o.g.
that the edge (r1, b1) is black, which means that the
edges (r1, b1), . . . , (rm, bm) ∈ M are all black, and
the edges (b1, r2), . . . , (bm, rm+1) ∈ M are all white.
Then, we have that:

m∑
i=1

‖ri − bi‖ =
1

λ

m∑
i=1

(‖ri − o‖+ ‖bi − o‖)

=
1

λ

m∑
i=1

(‖bi − o‖+ ‖ri+1 − o‖)

<

m∑
i=1

‖bi − ri+1‖.

Hence, by replacing in M the black edges of the cycle
by the white edges, we will obtain a matching of larger
total sum. �

The above alternating cycle idea in the problems
about intersections of geometric objects induced by
matchings appeared in the proof of Theorem 3 in the
paper of Pirahmad et al. [7].

Lemma 3 Each vertex of G has at least one white
edge incident to it.

Proof. Consider the blue vertex a′. Assume w.l.o.g.
that o is the origin of coordinates, and a′ is in the
positive direction of the y-axis. We have that ∠aoa′ <
π/2 because o /∈ B(aa′), then assume w.l.o.g. that a is
in the interior of the first quadrant Q1. Let Q2, Q3,
and Q4 be the second, third, and fourth quadrants,
respectively. Further assume w.l.o.g. that rays `(aa′),
`(bb′), and `(cc′) appear in this order counterclockwise.

Assume by contradiction that there is no white edge
incident to a′. This implies that b, c belong to the inte-
rior of Q1 ∪Q2. If c ∈ Q2, then the counterclockwise
rotation angle from `(cc′) to `(aa′) is larger than π.
Hence, c ∈ Q1. If b ∈ Q1, then the counterclockwise
rotation angle from `(aa′) to `(bb′), or that from `(bb′)
to `(cc′), is larger than π. Hence b ∈ Q2. Further-
more, if both b′ and c′ belong to Q1 ∪ Q2, then the
counterclockwise rotation angle from `(bb′) to `(cc′)
is larger than π. Hence, at least one of b′, c′ belong
to the interior of Q3 ∪ Q4. That is, b′ ∈ Q3 and/or
c′ ∈ Q4. The proof is divided now into three cases:
Case 1: b′ ∈ Q3 and c′ ∈ Q4. Since b ∈ Q2 and

c′ ∈ Q4, the angle ∠boc′ ≥ π/2, which implies that
o ∈ B(bc′) (see Figure 2a). That is, edge (b, c′) is

o
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o
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b c

b′
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θ
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β
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Figure 2: Proof of Lemma 3. Black edges are in normal
line style, and white edges in dashed style.

white. Similarly, edge (b′, c) is also white. The colors
of the edges of the cycle (b, c′, c, b′, b) alternate, then
Lemma 2 implies a contradiction.
Case 2: b′ ∈ Q3 and c′ /∈ Q4. Since the coun-

terclockwise rotation angle θ from `(bb′) to `(cc′) is
smaller than π, we must have that c′ ∈ Q1. As in
Case 1, we have that edge (b′, c) is white, given that
b′ ∈ Q3 and c ∈ Q1. Let β be the half of the angle
∠bob′, and γ be the half of the angle ∠coc′ (see Fig-
ure 2b). Note that ∠bob′ < π/2 and ∠coc′ < π/2 be-
cause o /∈ B(bb′) and o /∈ B(cc′). We have that β, γ <
π/4, which implies that ∠boc′ ≥ 2π−β− γ− θ ≥ π/2.
Hence, edge (b, c′) is also white. Again, the colors
of the edges of the cycle (b, c′, c, b′, b) alternate, and
Lemma 2 implies a contradiction.
Case 3: b′ /∈ Q3 and c′ ∈ Q4. The proof of this

case is analogous to that of Case 2.
The lemma thus follows. �

Lemma 3 implies that the graph G has always a
cycle (of length four or six) whose edges are color
alternating. Hence, Lemma 2 implies a contradiction,
and we obtain that the max-sum matchingM ensures
that E(aa′)∩E(bb′)∩E(cc′) 6= ∅. Therefore, Theorem 1
holds.
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