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Abstract

Increasing the efficiency in green energy production is
mandatory to reduce dependency on fossil fuels. Cap-
turing and storing solar energy is an appealing alterna-
tive, but optimizing energy collection with no damage
to components of solar plants is a complex problem.
In this work, some geometric optimization problems
for solar tracking in Concentrated Solar Power plants
based on Parabolic Through Collectors are addressed.
Using nice properties of a solution, we propose efficient
algorithms for optimal scheduling in solar tracking
tasks that can be adapted for other solar plants.

1 Introduction

Concentrated Solar Power (CSP) plants are an effective
alternative to photovoltaic technologies, as it has the
capacity of storing the energy captured from the sun.
Parabolic Trough Collectors (PTC) systems are one
of the most widespread CSP plants around the globe,
including more than 40 plants in Spain alone. PTC
systems are composed of a parabolic-shaped surface
reflecting the sun rays to a Heat Collector Element
(HCE) located at the focus of the parabola. The
parabolic-shaped mirror surface together with three
HCEs forms a Solar Collector Element (SCE), and 4
SCEs are a Solar Collector Assembly (SCA). For a full
decomposition of elements in the solar field of PTC
plants, the reader is referred to [1].

During normal operation of PTC plants, SCAs are
instructed to follow the sun so that the maximum en-
ergy can be collected, see Figure 1. Providing tracking
systems to simultaneously improve accuracy and re-
duce operational cost is a seminal research area in solar
plants. Methods for optimizing trackers in plants with
arbitrary design and geometry have been proposed
in the area of renewable energy [4, 2, 3]. When the
operating conditions are optimal, a perfect tracking of
the sun results in maximal energy collection.

Considering this scenario, the ray incidence over the
HCE for different SCA and solar angles is expected to
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be unimodal. However, the shape of the function can
change due to several errors, such as installation errors
of some components of the SCA, cracks/dirt in the
mirror surface, HCE bending and vertical/horizontal
displacements due to mechanical stress, among others.
This work raises some geometric problems to optimize
the tracking system considering any shape for the ray
incidence function. To the best of our knowledge, we
are the first considering the optimization of the solar
tracking while reducing the movements of the SCA in
a PTC plant.

The rest of the paper is organized as follows: Section
2 provides the necessary background and the defini-
tion of the optimization problems; the algorithms are
outlined in Sections 3 and 4.

2 Preliminaries

For this initial study, we assume that the weather
conditions are constant throughout the day. Thus,
solar irradiance over the HCE can be expressed as
a function z = f(x, y), where the (x, y) coordinates
represent the Solar Collector Assembly and the sun an-
gular displacements, respectively, while z corresponds
to the number of rays touching the HCE. Since there
is no change in the initial conditions, the 3D surface
corresponding to f can be interpreted as a shifted 2D
curve as illustrated in Figure 2. This visualization
allow us to redefine the function as z = f(θ), where θ
represents the difference between the sun and the SCA
angular position. Solar tracking is discrete in PTC
plants; hence, f can be defined as a step function with
n steps as follows:

f(θ) =

n∑
i=1

αiδSi(θ), (1)

where αi is the number of rays touching the HCE in
the step Si ∈ f , and δSi is a binary function indicating
if θ ∈ Si.

Using a ray-tracing software, f can be obtained by
moving the sun in a fixed axis with the SCA at 90º.
The events at which the sun rays start/end intersecting
the HCE can occur at any angular difference between
the sun and the SCA position; hence, the length of
the steps in f can be a real number. However, in this



XX Spanish Meeting on Computational Geometry, Santiago de Compostela, July 3-5, 2023

Figure 1: Solar tracking example in a real PTC plant.

Figure 2: Ray incidence over the HCE depending on
the angular position of the sun and the SCA for a
simple case, assuming that the SCE has a perfect
parabolic shape.

abstract we consider the case in which these numbers
are approximated as rational numbers (e.g., accurate
to within one thousandth of a unit). This is standard
in real-world applications, and involves the computa-
tional representation of real numbers. In the rational
case, the problem can be reduced to one in which the
solar irradiance function has steps with integer length.

2.1 The problems

Let f :IR → IN be a step function with n steps, defined
as in equation 1. Let S = {S1, · · · , Sn} be the set of
steps of f . The elements of S are disjoint, ordered by
x, and there is no gap between consecutive elements. A
step Si ∈ S is an interval of the form [θi1 , θi2), where
θi1 , θi2 are the edges of the step; let E be the set
containing all the edges of S. The ray incidence over
a step Si is defined by αSi , its length as lSi ∈ IN, and
the associated gain as gSi = αSi lSi . For convenience,
if θ ∈ Si, then θ ∈ S, αθ = αSi

, and Sl
θ (Sr

θ ) is the
portion of Si from its left (right) edge to θ. In addition,
for a tracking interval t = (θi, θj) s.t. θi ∈ Si, θj ∈ Sj ,
and i ≤ j, the length of t is lt = θj − θi, and its total
gain can be defined by:

gt =

gSr
θi
+ gSl

θj

+
∑j−1

k=i+1 gSk
j > i

gSr
θi
− gSr

θj
i = j

(2)

Figure 3: Main elements defining the ray incidence
function f . t is a tracking interval from θ1 to θ2. Total
irradiance in t (gt) is the area within t below the curve.
We consider f shifted to the range (0, ω∗).

For a multiset T = {t1, . . . , tk} the total solar irra-
diance (gain) of the set is IT =

∑
gti , and the total

length is defined as LT =
∑

lti . Finally, ω∗ is the
total length of S, and the initial position of the SCA
w.r.t the sun is θ0. See Figure 3 for an overview of the
described notations.

We formulate two optimization problems of particu-
lar interest for solar tracking in CSP plants. The first
problem looks for the minimum number of movements
of the SCA such that the solar irradiance intersecting
the HCE at any moment is preserved within a given
range. The second one addresses to optimize the total
solar irradiance intersecting the HCE with a limited
number of allowed movements. More formally:

Problem 1 (Min-Tracking, or MT-Problem): Given
a step function f defined on [0, ω∗], and two real num-
bers u1, u2, find a set of intervals T ∗ = {t1, . . . , tm} of
minimum size s.t. ti ⊆ [0, ω∗], ∀θ ∈ ti, u1 ≤ αθ ≤ u2

and LT∗ + θ0 = ω∗.

Problem 2 (Maximal Energy Collection, or MEC-
Problem): Given a step function f defined on [0, ω∗]
and m ∈ IN, find a set of intervals T ∗ = {t1, . . . , tj} s.t.
ti ⊆ [0, ω∗], |T ∗| ≤ m, LT∗ ≤ ω∗, and IT∗ is maximal.
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3 Minimum Tracking

The analysis of Problem 1 must consider the initial
position of the SCA with respect to the sun position.
Two cases are possible: the SCA is in a feasible con-
figuration, i.e. u1 ≤ αθ0 ≤ u2; or the SCA is violating
this restriction. In the former, it can be readily no-
ticed that the optimal solution is to wait while the sun
moves until a non-feasible state is reached. Therefore,
we can assume, without lost of generality, that the
SCA starts from a non-feasible configuration.

Theorem 1 Let t∗ = (θi, θj) be a maximum tracking
interval in f such that for any θ ∈ t∗, u1 ≤ αθ ≤ u2.
If the SCA initially violates the boundary conditions,
then the minimum possible cardinality of a solution
that satisfies conditions of Problem 1 is ⌈ω∗−θ0

lt∗
⌉ .

Proof. Since the SCA violates the boundary condi-
tion, it needs to be moved to a feasible configuration.
Let us assume that such feasible configuration initiates
at θi and when the sun reaches θj the SCA moves again
to θi. In such case it is clear that the SCA has rotated
⌈ω∗−θ0

lt∗
⌉ times. Hence T ∗ = {t∗, . . . , t∗, t̂} with the

size of T ∗ equals m and t̂ ⊆ t∗ is a feasible solution of
Problem 1. Moreover, T ∗ is of miniminum size because
LT∗ = ω∗ − θ0. Otherwise, if T = {t1, . . . , tn} is a
feasible solution with n < m, then there would exist
a ti whose length is larger than the length of t∗, this
contradicts the maximality of t∗. □

Corollary 2 The MT-Problem can be solved in O(n+
m) time, where n is the number of steps in f and m
is the size of a solution.

Proof. The proof of Theorem 1 provides an additional
insight on the optimal value when the SCA starts from
a feasible configuration. If l0 is the length of the inter-
val in which the SCA meets the problem restrictions
from the begining, then the minimum number of ro-
tations of the SCA is m = ⌈ω∗−θ0−l0

lt∗
⌉. Finally, since

the maximal interval t∗ can be computed in linear
time with a sweep from left to right, a greedy algo-
rithm computes the optimal solution T ∗ in O(n+m)
time. □

4 Maximal energy collection

We say that a solar irradiance function f is unimodal
if, for exactly one i ∈ {1, . . . , n}, αj ≤ αj+1 ∀j < i
and αj ≥ αj+1 ∀j ≥ i. Likewise, f is multimodal or
k-modal if it has k local maxima. The unimodal case
can be solved using a greedy approach. The main
ideas are the following.
Given a real number l, let Gl be the maximum

gain with respect to f of an interval of length l. By
simplicity, we refer to Gl as the maximum gain of

length l. Notice that when f is unimodal, any interval
of maximum gain of length l contains intervals of
maximum gain for lengths lower than l. Hence, given
l1, l2 ∈ IR with l1 ≤ l2 ≤ ω∗, it can always be found
t1 and t2 of lengths lt1 = l1 and lt2 = l2 of maximum
gain in f for l1, l2, respectively, such that t1 ⊆ t2.

Theorem 3 Let l = ω∗

m and t be a subinterval of
[0, ω∗] s.t. lt = l and gt = Gl. Then T ∗ = {t, ..., t}
with |T ∗| = m is optimal for MEC problem when f is
unimodal.

Corollary 4 The MEC-Problem can be solved in
O(n+m) time when f is unimodal.

When f is k-modal (k > 1), it is easy to find an
example for which the MEC problem cannot be solved
with the same greedy algorithm. Let us introduce
some concepts to be used in the proposed solution.
Recall that E is defined as the set of edges of f .

Definition 5 An interval t = (θ1, θ2) is discrete,
called as a d-interval, if θ1 ∈ E and θ2 ∈ E. The
interval is semi-discrete if it starts or ends in an edge
of f .

Definition 6 We say that a step of f is modal (m-
step) if it is a local maximum.

Definition 7 An interval t = (θ1, θ2) is an md-
interval, if it is discrete and contains at least a modal
step of f . A semimd-interval is a semi-discrete interval
containing at least a modal step of f .

The following results constitute the heart of our
approach.

Lemma 8 There exists an optimal solution T ∗ to
the MEC problem s.t. for any t ∈ T ∗, t is at least
semi-discrete.

Lemma 9 There exists an optimal solution T ∗, to the
MEC problem s.t. ∀i = 1 . . . |T ∗| − 1, ti is a discrete
interval.

Theorem 10 There exist an optimal solution T ∗ to
the MEC problem s.t. ∀i = 1 . . . |T ∗| − 1, ti is an
md-interval, and tm is a semi md-interval.

4.1 The algorithm

The following property of any optimal solution T ∗ can
be easily proved: removing any interval ti from T ∗

yields a solution T ′ = T ∗ − {ti} that is optimal for
m − 1 moves and ω∗ − lti total displacement of the
SCA. This property, known as optimal substructure
property, allows us to find an optimal solution by
solving a collection of subproblems and it is the base of
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the greedy and dynamic programming paradigms. In
addition, and more importantly, according to Theorem
10, the general form of the optimal solution to the MEC
problem can be expressed as:

I∗m = Dl
m−1 +Gω∗−l, (3)

being I∗m the maximum gain associated to m moves,
Dl

m−1 the maximum gain for length at most l using
m − 1 discrete intervals, and Gω∗−l the maximum
gain in f for the remaining length. Because of the
optimal substructure of the problem, Dl

m−1 is optimal
for length l. However, we cannot know beforehand the
value of l, hence we divide the problem in two tasks:

Task 1: Computing Dl
m−1, ∀l ∈ (0, ω∗).

Task 2: Computing Gl, ∀l ∈ (0, ω∗).

According to (3), a solution with length l for the first
task is associated to a solution with length ω∗ − l′

in the second, where l′ ≤ l is the total length of the
intervals obtained during the computation of Dl

m−1.
In addition, notice that l ∈ IN because the length of
the steps of f are integers. Therefore, the following
remarks can be stated:

Remark 1 Combining the solutions from Task 1 and
Task 2 takes O(ω∗).

Remark 2 I∗m is the maximum value obtained after
combining the solutions from Task 1 and Task 2.

Task 2 can be easily solved in linear time for a given
l and we have:

Theorem 11 Task 2 can be solved in O(nω∗) time.

We now focus on solving Task 1. Since the con-
sidered intervals are discrete, we design an efficient
algorithm based on Dynamic Programming (DP). Our
algorithm will solve the MEC problem for any length
considering onlymd-intervals, which is the requirement
for Task 1. For simplicity, we refer to this version as
the MEC-d problem.

Let B be the set containing the md-intervals of f . In
addition, let us consider the table D[i, j, l] indicating
the maximum gain for the MEC-d problem when using
up to interval i of B, with j movements and l as
maximum solar displacement. Notice that intervals
in B do not need to be sorted, but we assume a fixed
order during the execution of the algorithm. Then,
the update rule for D can be expressed as:

D[i, j, l] =


0 (a) 0 ∈ {i, j, l}
D[i− 1, j, l] (b) l < li

max(D[i− 1, j, l], (c) else

gi +D[i, j − 1, l − li])

(4)

where gi represents the gain of the interval i of B.

Theorem 12 DP is optimal for the MEC-d problem
and spends O(n2mω∗) time.

Remark 3 For a given l ∈ (0, ω∗), D[|B|,m − 1, l]
contains the optimal value for Task 1.

The intervals corresponding to an optimal solution
T ∗ to the MEC problem can be obtained after com-
puting I∗m. Notice that every decision is associated to
an interval, both in Task 1 and Task 2; see Theorems
11 and 12. In Taks 2, the interval associated to Gl

(for a given value of l) can be obtained by scanning
f . On the other hand, for Task 1, it is easier to use
the cases defining equation 4 to retrieve the intervals
associated to a decision. Specifically, for any i, j, l, we
check (a), (b) or (c); if cases (a) or (b) holds, then the
candidate i is not used; if c holds, then we check the
equality D[i, j, l] = D[i − 1, j, l] and if it holds, then
candidate i is not used, otherwise, it is used. Starting
this process at D[|B|,m− 1, l], being l the length of
the optimal solution, it is possible to retrieve the full
set of intervals in T ∗.

Corollary 13 The MEC problem can be solved in
O(n2mω∗).
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