
XX Spanish Meeting on Computational Geometry, Santiago de Compostela, July 3-5, 2023

Comparing box and disk bichromatic discrepancy

Nicolau Oliver Burwitz∗1 and Carlos Seara†1

1Universitat Politècnica de Catalunya

Abstract

In this paper we consider the problem of computing the
discrepancy of a bichromatic point set by using boxes
and disks and comparing the respective algorithmic
complexities.

1 Introduction

Let S be a bichromatic d-dimension n-point set. Let
R and B be a the set of red and blue points from S
respectively, so S = R∪B. The colouring of the points
in S is expressed in the mapping χ : S −→ {−1, 1},
where blue points are negative and red points are
positive. Let us define the bichromatic discrepancy of
a geometric shape SH:

∆(SH) =
∑

x∈(SH∩S)

χ(x).

This is, the discrepancy of the shape is the num-
ber of red points minus the number of blue points.
The maximum bichromatic discrepancy of a family of
shapes SH ∈ F is defined as:

Max∆(S, χ,F) = max
SH∈F

|∆(SH)|.

The main goal of this paper is to compare existing
algorithms and approaches to solve the problem of
computing the maximum bichromatic discrepancy of
the set S using various families of shapes. The shapes
considered are boxes and disks, in various dimensions.

Applications of computing discrepancy are present
in several areas of computer science. Three major
ones are mentioned in the introduction of the paper
by Dobkin et al. [9] are the Agnostic PAC-Learning,
ϵ-Approximations, and Sampling Patterns in Graphics.

Sampling patterns are used in ray-tracing for ren-
dering digital images. If the pattern is ill designed it
yields visible biasing artefacts. Computing the boxes
discrepancy in 2d is related to the design of good
patterns.

∗Email: nicolau.oliver@estudiantat.upc.edu
†Email: carlos.seara@upc.edu. Supported by project

PID2019-104129GB-I00/ MCIN/ AEI/ 10.13039/501100011033.

If instead of pixels we instead assume more circular
shaped receptors, as the human eye’s photo-receptors
roughly are, and furthermore take into account other
optical effects natural to human eyesight, it suggests
studying discrepancy on disks instead of boxes.

There is a lot literature about discrepancy, and the
books by Matousek [13] and Chazelle [5] cover in depth
the topic. For related results see Bereg et al. [4] and
Dı́az-Báñez et al. [6, 7].

2 Boxes discrepancy

We first introduce the approach presented by Dobkin
et al. [9], and Gunopulos [11], to compute the boxes
bichromatic discrepancy in 1d and 2d.

2.1 1d : Intervals

As boxes and disks both define intervals in the 1-
dimension (1d) case, the results from Dobkin et al. [9]
apply to both shapes. We specially want to highlight
some results for the 1d case, as they provide the proper-
ties that are fundamental for the algorithms in further
sections.

Lemma 1 [9] Given an interval [l, r] on our 1d setting,
the discrepancy ∆([l, r]) = ∆([l,m]) +∆([m, r]) where
m ∈ [l, r] and m /∈ S. See Figure 1.

l rm

Figure 1: Example points in 1d with discrepancy 4.

This allows us to divide and conquer the computa-
tion of the discrepancy.

Lemma 2 [9] Given an interval [l, r] on our 1d setting,
let the maximum discrepancy interval be [a, b] ∈ [l, r].
Then for any m ∈ [a, b] the interval [a,m] maximises
the discrepancy among all intervals in [l,m] that have
m as the right endpoint. Analogously, for the discrep-
ancy among all intervals in [m, r] with m as the left
endpoint.

XX Spanish Meeting on Computational Geometry, Santiago de Compostela, July 3-5, 2023

Lemma 2 introduces the connection between com-
puting the maximum discrepancy in intervals with
some fixed endpoints and computing the maximum
discrepancy among all intervals. It specifically implies:

Observation 3 [9] Given the maximum discrepancy
of two consecutive intervals [l,m] and [m, r] with the
fixed endpoint m, we can compute the maximum dis-
crepancy for their union interval [l, r].

From Observation 3 we can intuitively see how
we can build a segment tree of the points to repre-
sent all possible intervals. Computing this tree takes
O(n log n) time and allows us to solve the static 1d
maximum discrepancy.

But this tree also allows for a dynamic algorithm.
Updates need only to traverse a O(log n)-LENGTH
path from the new leaf (or deleted leaf) to the root
of the tree. This allows us to solve the dynamic 1d
maximum discrepancy.

Theorem 4 [9] The maximum discrepancy for inter-
vals in 1d can be computed in O(n log n) time (linear
if input is sorted) and O(n) space. Computing up-
dates after insertion/deletion of a point can be done
in O(log n) time and O(n) space.

2.1.1 Axis-parallel boxes

The key strategy to tackle the 2d setting, is to find
projections back to 1d. The axis-parallel boxes is a
perfect example.

Fix the y-coordinates of the axis-parallel box. We
have Θ(n2) pairs to choose from, and each of them
defines a horizontal strip. Because we fixed them, the
y-coordinates of the points inside the strip become
irrelevant. See Figure 2.

Lemma 5 [9] Computing the maximum discrepancy
box in a fixed horizontal strip is equivalent to finding
the maximum discrepancy interval of the points inside
the strip projected onto the x-axis.

ytop

ybottom

Figure 2: Discrepancy with boxes in 2d.

These projections allow us to use the previous results
to design algorithms. Let S again be the input set of
n points. An outline of the algorithm step by step is:

1. Sort S by y-coordinate1, obtaining the order
p1, . . . , pn.

2. For each pi do:

(a) Initialise the segment tree with only pi, this
represents the strip that only contains pi.

(b) For each pj such that i < j do:

i. Update the segment tree by inserting pj .

ii. If the new maximum discrepancy is
larger than the one seen so far, record
the box.

Step 1 has cost O(n log n) time. Step 2.b.i has cost
O(log n) time. Step 2.a and 2.b.ii have cost O(1) time.
Both loops 2 and 2.b have O(n) iterations, so the
total complexity is O(n2 log n) time and O(n) space.
This algorithm is straightforward to extend to higher
dimensions, for each new dimension the “strip” is
determined by two extra points, so the complexity is
O(n2(d−1) log n) time and O(n) space.
This can be improved by applying divide and con-

quer to the y-axis, after sorting the input by both
coordinates as a pre-computation. This and more
improvements where shown by Barbay et al. [2] to
result in an O(n2) time algorithm, or even faster un-
der some parametrizations of the input. They extend
this approach to higher dimensions, resulting in an
O(nd) time algorithm. This running time is tight up to
subpolynomial factors, as proven by Backurs et al. [1].

3 Disk discrepancy

Disks are equivalent to intervals in 1d, but disks in
2d do not satisfy the analogous of Lemma 1. There is
no easy way to decompose a disk into smaller disks.
Analogously, Lemma 2 doesn’t hold.

Nevertheless, we can still apply the key strategy
presented in Subsection 2.1.1, finding projections back
to 1d. The projection we present is equivalent to the
one used by Bereg et al. [3].
For pi, pj ∈ S consider all disks that pass through

them. All their centers lie on the bisector of the
segment pipj . See Figure 3.

Definition 6 The oriented angle αij
k ∈ [−π, π] of a

point pk ∈ S with respect to pi, pj ∈ S is the supple-
mentary angle of ∠pipkpj . It is positive if pk is to the
right of the directed line −−→pipj , otherwise negative.

If we order the points in S by the oriented angle, the
furthest left point in Figure 3 has the smallest oriented
angle. The furthest right point has the largest oriented
angle. Points close to segment pipj have oriented angle
close to 0.

1The following for loops iterate in this order.

XX Spanish Meeting on Computational Geometry, Santiago de Compostela, July 3-5, 2023

O

pj

pi

pk

pq

Figure 3: Discrepancy with disks in 2d. Oriented angle
α is negative, and oriented angle β is positive.

Traversing all the points pk ∈ S by their oriented
angle αij

k = ±(π−∠pipkpj) can be visualised as sliding
the center O of the disk over the bisector from left to
right.

Thus, for fixed points pi, pj ∈ S, let

Λij = [αij
1 , . . . , α

ij
k , . . . , α

ij
n−2]

be the list (in fact, a multi-set) of oriented angles of
the points pk with respect to pi, pj . Each αij

k retains
the colour of the point it represents.

Definition 7 The inverse of an angle αij
k is:

inv(αij
k) =

{
if αij

k < 0 : swap color(π − |αij
k |)

else αij
k .

Analogously, the inverse of a list

inv(Λij) = [∀k : inv(αij
k)]

is just the list of the inverse of its elements.

In the circular discrepancy, the intervals of angles
must be of the form [β − π, β]Λij where β ∈ [0, π].
This interval represents the disk through pi, pj with
inscribed angle β, where β is positive; so it lies to
the right of −−→pipj . Let [0, β]inv(Λij) be the same inter-
val/disk over the inverse angles of Λij .

Lemma 8 The disk discrepancy of Λij is equal to a
constant with respect to β, plus the interval discrep-
ancy of the inverse angles with fixed endpoint 0.

∆([β − π, β]Λij) = ∆([−π, 0]Λij) + ∆([0, β]inv(Λij)).

Definition 9 The projection of a list of angles is:

P(Λij) = [∀k : {αij
k ∪ inv(αij

k)}].

In few words, the projection is duplicating the nega-
tive angles with its inverses. So a negative red angle is
duplicated by inserting its positive value in blue. As a
consequence of Lemma 8 we have the following result.

Theorem 10 The disk discrepancy of a list of angles
is equal to the interval discrepancy of its projection,
with the restriction of containing the interval [−π, 0],

∆([β − π, β]Λij) = ∆([−π, β]P(Λij)), β ∈ [0, π].

The algorithm for circular discrepancy starts by
fixing two points. We have O(n2) pairs to choose from,
and each of them defines a bisector. Because we fixed
the points, the remaining points can be sorted by their
oriented angle. These angles are then projected via P .
Using this projection, the algorithm is straightforward:

1. For each pair (pi, pj) ∈ S×S such that i ̸= j do:

(a) Compute the list of oriented angles Λij of
all points with respect to pi, pj .

(b) Compute the projection P(Λij).

(c) Compute the maximum discrepancy interval
with the restriction:

∆(P(Λij)) = [−π, β], β ∈ [0, π].

To compute Step 1.c it is enough to modify slightly
the algorithm for interval discrepancy.

Steps 1.a and 1.b have cost O(n) and Step 1.c has
cost O(n log n) time. The Loop 1 is O(n2) iterations
so the total complexity is O(n3 log n) time and O(n)
space. This is equivalent to the complexity of the
algorithm presented by Bereg et al. [3].

In comparison to this approach, a faster and more
general algorithm exists by Dobkin and Eppstein [8].
Their approach extends to shapes bounded by alge-
braic curves, such as circles and ellipses in 2d. Lifting
the points to the paraboloid, in order to compute the
discrepancy inside the disks they compute the lifted
points below the corresponding plane, using the topo-
logical sweep algorithm by Edelsbrunner et al. [10].
Their resulting complexity is O(n3) time for disks, and
O(n5) time for ellipses.

We think that finding the maximum discrepancy
disk in 2d could be 4-SUM hard. The reduction can
be done using Proposition 11 in Heras et al. [12], and
Theorems 6, 7 and Lemma 12 in Bereg et al. [4].

pi

pj

pk

αi

pl

Ci
j,k,l

Figure 4: Generalization of the oriented angle in 3d.

XX Spanish Meeting on Computational Geometry, Santiago de Compostela, July 3-5, 2023

It is straightforward to generalise to d > 2 the
algorithm we present above and the one by Dobkin and
Eppstein [8]. See Figure 4.The respective complexities
are O(nd+1 log n) and O(nd+1) time and O(n) space.

4 Unoriented boxes

In contrast to disks in 2d, boxes with arbitrary orien-
tations in 2d can be decomposed into smaller boxes of
that same orientation. Again this impacts positively
the complexity of the algorithm.

Lemma 11 Computing the maximum discrepancy
box in a fixed strip with orientation v⃗ is equivalent to
finding the maximum discrepancy interval of the points
inside the strip projected onto a line with direction v⃗.

This is just a generalisation of Lemma 5, and allows
us to reuse the results for axis parallel boxes.

Lemma 12 A set S of n points in 2d has O(n2)
unique linear projections onto 1d.

Figure 5: Two projections on a line.

Furthermore, the projections of the set S can be sorted
by their angle. Two consecutive projections differ
by the swap of two points. This can be processed
in two insertion/deletion updates using the dynamic
algorithm for intervals in 1d. The trivial algorithm
reusing the boxes discrepancy algorithm is O(n4 log n)
time. We are currently studying other approaches to
improve this trivial complexity.

5 Conclusions

The following table illustrates the time complexities
of the algorithms for computing the discrepancies for
boxes, disks and unoriented boxes.

Boxes Disks Unoriented Boxes

d = 1 O(n log n)
d = 2 O(n2) O(n3) O(n4 log n)
d ≥ 3 O(nd) O(nd+1) ?

Open problem 13 Is the maximum bichromatic
disk discrepancy problem in 2d 4-SUM hard?

Exploiting advanced data structures in the 2d set-
ting could be promising. Specifically in the case of ori-
ented boxes, we attempted fruitlessly to use quad-trees
to extend the algorithm for discrepancy on intervals
in 1d. The hope was that quad-trees of the points can
be rotated with only O(n2) updates.

Open problem 14 Is there a faster algorithm for
unoriented boxes in d ≥ 2?

References

[1] A. Backurs, N. Dikkala and C. Tzamos. Tight Hard-
ness Results for Maximum Weight Rectangles. ArXiv
abs/1602.05837, (2016).

[2] J. Barbay, T.M. Chan, G. Navarro and P. Pérez-
Lantero. Maximum-weight planar boxes in O(n2)
time (and better). Information Processing Letters,
Vol. 114(8), (2014), pp. 437–445.

[3] S. Bereg, O. Daescu, M. Zivanic and T. Rozario. Small-
est Maximum-Weight Circle for Weighted Points in
the Plane. ICCSA, (2015), pp. 244–253.

[4] S. Bereg, J.M. Dı́az-Báñez, D. Lara, P. Pérez-Lantero,
C. Seara, and J. Urrutia. On the coarseness of bi-
colored point sets. Computational Geometry: Theory
and Applications, 46(1), (2013), pp. 65–77.

[5] B. Chazelle. The Discrepancy Method in Computa-
tional Geometry. Handbook of Discrete and Computa-
tional Geometry, CRC Press 44, (2004), pp. 983–996.

[6] J.M. Dı́az-Báñez, R. Fabila, P. Pérez-Lantero, I. Ven-
tura. New results on the coarseness of bicolored point
sets. Information Processing Letters, 123, (2017), pp.
1–7.

[7] J.M. Dı́az-Báñez, M.A. López, C. Ochoa, P. Pérez-
Lantero. Computing the coarseness with strips or
boxes. Discrete Applied Mathematics, 224(19), (2017),
pp. 80–99.

[8] D.P. Dobkin and D. Eppstein. Computing the Dis-
crepancy. 9th Annual Symposium on Computational
Geometry, (1993).

[9] D.P. Dobkin, D. Gunopulos, and W. Maass. Com-
puting the maximum bichromatic discrepancy, with
applications to computer graphics and machine learn-
ing. Journal of Computer and Systems Sciences, 52(3),
(1996), pp. 453–470.

[10] H. Edelsbrunner and L.J. Guibas. Topologically sweep-
ing an arrangement. Journal of Computer and System
Sciences, Vol. 38(1), (1989), pp. 165–194.

[11] D. Gunopulos. Computing the Discrepancy. Thesis in
Princeton University, Princeton, N.J. (1995).

[12] A. de las Heras, G. Esteban, D. Garijo, C. Huemer,
A. Lozano, N. Oliver and D. Orden. Measuring cocir-
cularity in a point set. ECG23 (2023).

[13] J. Matoušek. Geometric Discrepancy: An Illustrated
Guide. Springer-Verlag, (1999).

	Introduction
	Boxes discrepancy
	1d: Intervals
	Axis-parallel boxes

	Disk discrepancy
	Unoriented boxes
	Conclusions

