Computing k-Crossing Visibility through k-levels

Frank Duque*1
${ }^{1}$ Escuela de Matemáticas, Universidad Nacional de Colombia, Medellín, Colombia

1 Introduction

The notion of visibility has been used extensively in Computational Geometry, in the context of the art gallery problem [13, 11]. The development of wireless network connections has motivated the study of a new kind of visibility, where the line of visibility can cross k obstacles [1].

Let \mathcal{A} be an arrangement of straight lines and segments in \mathbb{R}^{2} (or planes in \mathbb{R}^{3}). The k-crossing visibility on \mathcal{A} of a point p, denoted by $\mathcal{V}_{k}(p, \mathcal{A})$, is the set of points q on elements of \mathcal{A} such that the segment $p q$ intersects at most k elements of \mathcal{A}. See Figure 1 .

Figure 1: The blue points and segments illustrate the 2-crossing visibility of the red point on an arrangement of lines.

Some early works on k-crossing visibility are [12, 9, 5. In [4] recently Bahoo et al. introduced an algorithm that computes $\mathcal{V}_{k}(p, \mathcal{A})$ in $O(k n)$-time, where \mathcal{A} consists of the edges of a polygon.

Theorem 1 (Bahoo et al. [4]) Given a simple polygon P with n vertices and a query point p in P, the region of P that is k-crossing visible from p, can be computed in $O(k n)$ time.

In this work we obtain another proof of Theorem 1 and we prove Theorem 2, Theorem 4. Proposition 3 and Proposition 5.

[^0]Theorem 2 Let \mathcal{A} be an arrangement of n lines in the plane, and let p be a query point. Then $\mathcal{V}_{k}(p, \mathcal{A})$ can be computed in $O(n \log n+k n)$ time.

Given an arrangement \mathcal{A} of straight lines, rays and segments in the plane (or planes in \mathbb{R}^{3}), the combinatorial complexity of \mathcal{A}, is the total number of vertices and edges (and faces) defined by \mathcal{A}.

Proposition 3 The maximum combinatorial complexity of the k-crossing visibility on arrangements of n straight lines in the plane is $\theta(k n)$.

Theorem 4 Let \mathcal{A} be an arrangement of n planes in \mathbb{R}^{3}, and let p be a query point. Then $\mathcal{V}_{k}(p, \mathcal{A})$ can be computed in $O\left(n \log n+k^{2} n\right)$ expected time.

Proposition 5 The maximum combinatorial complexity of the k-crossing visibility on arrangements of n planes in \mathbb{R}^{3} is $\theta\left(k^{2} n\right)$.

Note that, by Proposition 3 and Proposition 5 . Theorem 2 and Theorem 4 are optimal for $k=\Omega(\log n)$ and $k=\Omega(\sqrt{\log n})$, respectively.

Given an arrangement \mathcal{A} of objects in $\mathbb{R}^{2}\left(\right.$ or $\left.\mathbb{R}^{3}\right)$, the $(\leq k)$-level-region of \mathcal{A} is the set of points in \mathbb{R}^{2} (or \mathbb{R}^{3}) with at most k elements of \mathcal{A} lying above it. In the following we denote by $(\leq k)$ level (\mathcal{A}), to the portion of the elements of \mathcal{A} that are in the $(\leq k)$-level-region of \mathcal{A}.

Let \mathcal{T} be the transformation

$$
\begin{aligned}
\mathcal{T}((x, y)) & =(x / y, 1 / y) & & \text { in the } \mathbb{R}^{2} \text { case, or } \\
\mathcal{T}((x, y, z)) & =(x / z, y / z, 1 / z) & & \text { in the } \mathbb{R}^{3} \text { case. }
\end{aligned}
$$

In this paper we obtain a linear time reduction, of the problem of obtaining $\mathcal{V}_{k}(p, \mathcal{A})$ to the problem of obtaining $(\leq k)$ level (\mathcal{A}), by applying \mathcal{T}. This reduction can be easily adapted for obtaining k-crossing visibilities on another arrangements whose ($\leq k$)-level is known.

2 Results in \mathbb{R}^{2}

Let \mathcal{D} be the set of points $(x, y) \in \mathbb{R}^{2}$ such that $y \neq 0$. Throughout this section, O denotes the point $(0,0) \in$ \mathbb{R}^{2} and \mathcal{T} denotes the transformation $\mathcal{T}: \mathcal{D} \rightarrow \mathcal{D}$ such that $\mathcal{T}((x, y))=(x / y, 1 / y)$.

In this section, we prove that \mathcal{T} determines a bridge between k-crossing visibility and $(\leq k)$-levels in \mathbb{R}^{2}. Then, we use this result to prove Theorem 1. Theorem 2 and Proposition 3

2.1 Properties of \mathcal{T}

Given $D \subset \mathcal{D}$ we denote by $\mathcal{T}[D]$ the image of D under \mathcal{T}. We also denote by $\mathcal{T}[\mathcal{A}]$ the set images of the elements of \mathcal{A} under \mathcal{T}. In this section, we first prove several properties of \mathcal{T}. Then, we determine $\mathcal{T}[D]$ for different instances of D. Finally, we prove that $\mathcal{V}_{k}(O, \mathcal{A})$ can be obtained from $(\leq k)$ level $(\mathcal{T}[\mathcal{A}])$.

Proposition $6 \mathcal{T}$ is self-inverse.
Proof. $\mathcal{T} o \mathcal{T}((x, y))=\mathcal{T}((x / y, 1 / y))=(x, y)$.
Proposition $7 \mathcal{T}$ sends straight lines to straight lines. More precisely, if L is the straight line in \mathcal{D} with equation $a x+b y+c=0$ then $\mathcal{T}[L]$ is the straight line in \mathcal{D} with equation $a x+c y+b=0$.

Proof. Let L^{\prime} be the straight line with equation $a x+$ $c y+b=0$. If $\left(x_{0}, y_{0}\right)$ is in L then $a x_{0}+b y_{0}+c=0$; thus, as $a \frac{x_{0}}{y_{0}}+c \frac{1}{y_{0}}+b=0$, then $\mathcal{T}\left(x_{0}, y_{0}\right)$ is in L^{\prime}. Similarly, if $\left(x_{0}, y_{0}\right)$ is in L^{\prime} then $\mathcal{T}^{-1}\left(x_{0}, y_{0}\right)=\mathcal{T}\left(x_{0}, y_{0}\right)$ is in L.

Proposition $8 \mathcal{T}$ preserve incidences between points and lines. More precisely the point p is in the straight line L if and only if $\mathcal{T}(p)$ is in the straight line $\mathcal{T}[L]$.

Proof. Let $p=\left(x_{0}, y_{0}\right)$ be a point in \mathcal{D} and let L : $a x+b y+c=0$ be a straight line in \mathcal{D}. This proof follows from the fact that $\left(x_{0}, y_{0}\right)$ satisfies $a x+b y+c=$ 0 if and only if $\left(\frac{x_{0}}{y_{0}}, \frac{1}{y_{0}}\right)$ satisfies $\mathcal{T}[L]: a x+c y+b=$ 0.

Given a line L in \mathcal{D}, we denote by L^{+}the set of points in L whose second coordinate is greater than zero, and we denote by L^{-}the set of points in L whose second coordinate is less than zero.

Proposition 9 Let L be a straight line in \mathcal{D}. Then $\mathcal{T}\left[L^{+}\right]=\mathcal{T}[L]^{+}$and $\mathcal{T}\left[L^{-}\right]=\mathcal{T}[L]^{-}$. Moreover, If $p_{1}, p_{2}, \ldots, p_{k}$ are in L^{+}(or they are in L^{-}) ordered by their distance to the x-axis from the closest to the furthest, then $\mathcal{T}\left(p_{1}\right), \mathcal{T}\left(p_{2}\right), \ldots, \mathcal{T}\left(p_{k}\right)$ are in $\mathcal{T}\left[L^{+}\right]$ (or they are in $\mathcal{T}\left[L^{-}\right]$, respectively), ordered by their distance to the x-axis from the furthest to the closest.

Proof. As \mathcal{T} sends straight lines to straight lines and it does not change the sign of the second coordinate, then $\mathcal{T}\left[L^{+}\right]=\mathcal{T}[L]^{+}$and $\mathcal{T}\left[L^{-}\right]=\mathcal{T}[L]^{-}$. If the second coordinates of p_{i} and p_{j} are y_{i} and y_{j}, respectively, then the second coordinates of $\mathcal{T}\left(p_{i}\right)$ and $\mathcal{T}\left(p_{j}\right)$ are $1 / y_{i}$ and $1 / y_{j}$, respectively. This proof follows from the fact that $\left|y_{i}\right|<\left|y_{j}\right|$ if and only if $\left|1 / y_{i}\right|>\left|1 / y_{j}\right|$.

Let \mathcal{D}^{+}denote the set of points in \mathcal{D} whose second coordinate is greater than zero, and let \mathcal{D}^{-}denote the set of points in \mathcal{D} whose second coordinate is less than zero. The proofs of Proposition 10 and Proposition 11 follows from Proposition 9

Proposition 10 Let D be a line segment contained in a straight line L, whose endpoints are p and q.

- If both p and q are in $\mathcal{D}^{+}\left(\mathcal{D}^{-}\right)$, then $\mathcal{T}[D]$ is the line segment contained in $\mathcal{D}^{+}\left(\mathcal{D}^{-}\right)$whose endpoints are $\mathcal{T}(p)$ and $\mathcal{T}(q)$.
- If p is in the x-axis and q is in $\mathcal{D}^{+}\left(\mathcal{D}^{-}\right)$, then $\mathcal{T}[D]$ is the ray contained in $\mathcal{D}^{+}\left(\mathcal{D}^{-}\right)$, defined by the straight line $\mathcal{T}[L]$ and the point $\mathcal{T}(q)$.

Given a $D \subset \mathcal{D}$ we denote by \bar{D} the closure of D in \mathbb{R}^{2}.

Proposition 11 Let D be a no horizontal ray contained in a straight line L, whose endpoint is p.

- If both p and D are in $\mathcal{D}^{+}\left(\mathcal{D}^{-}\right)$, then $\mathcal{T}[D]$ is the line segment contained in $\mathcal{D}^{+}\left(\mathcal{D}^{-}\right)$, whose endpoints are $\mathcal{T}(p)$ and the intersection of $\overline{\mathcal{T}[L]}$ with the x-axis.
- If p is in the x-axis and D is in $\mathcal{D}^{+}\left(\mathcal{D}^{-}\right)$, then $\mathcal{T}[D]$ is the ray defined by the part of the straight line $\mathcal{T}[L]$ in $\mathcal{D}^{+}\left(\mathcal{D}^{-}\right)$.

Proposition 12 Let D be a horizontal ray contained in a straight line L whose endpoint is p. If D is contained in $\mathcal{D}^{+}\left(\mathcal{D}^{-}\right)$, then $\mathcal{T}[D]$ is the horizontal ray in $\mathcal{D}^{+}\left(\mathcal{D}^{-}\right)$, defined by the straight line $\mathcal{T}[L]$ and the point $\mathcal{T}(p)$. If D is contained in \mathcal{D}^{+}, then D and $\mathcal{T}[D]$ have the same direction; in the other case, D and $\mathcal{T}[D]$ have opposite direction.

Proof. If L has equation $b y+c=0$ then $\mathcal{T}[L]$ is the horizontal line with equation $c y+b=0$.

From Proposition 7, Proposition 10, Proposition 11 and Proposition 12 we conclude that: If D is a straight line, ray or segment contained in $\mathcal{D}^{+}\left(\mathcal{D}^{-}\right)$then $\mathcal{T}[D]$ is a straight line, ray or segment contained in \mathcal{D}^{+} (\mathcal{D}^{-}).

Proposition 13 Let L be a straight line in \mathcal{D}. Then $O \in \bar{L}$ if and only if $\mathcal{T}[L]$ is a vertical line.

Proof. This proof follows from the fact that \bar{L} has equation $a x+b y=0$ if and only if $\mathcal{T}[L]$ has equation $a x+b=0$

Let $\mathcal{V}_{k}^{+}(O, \mathcal{A})$ denote the portions of the elements of $\mathcal{V}_{k}(O, \mathcal{A})$ in \mathcal{D}^{+}, i.e.

$$
\mathcal{V}_{k}^{+}(O, \mathcal{A})=\left\{D \cap \mathcal{D}^{+}: D \in \mathcal{V}_{k}(O, \mathcal{A})\right\}
$$

Similarly, let $\mathcal{V}_{k}^{-}(O, \mathcal{A})$ denote the portions of $\mathcal{V}_{k}(O, \mathcal{A})$ in \mathcal{D}^{-}, i.e.

$$
\mathcal{V}_{k}^{-}(O, \mathcal{A})=\left\{D \cap \mathcal{D}^{-}: D \in \mathcal{V}_{k}(O, \mathcal{A})\right\}
$$

Let $(\leq k)$ level $^{+}(\mathcal{A})$ denote the portion of the elements of $(\leq k)$ level (\mathcal{A}) in \mathcal{D}^{+}, i.e.

$$
(\leq k) \text { level }^{+}(\mathcal{A})=\left\{D \cap \mathcal{D}^{+}: D \in(\leq k) \text { level }(\mathcal{A})\right\}
$$

The $(\leq k)$-lower-level-region of \mathcal{A} is the set of points in $\mathbb{R}^{2}\left(\mathbb{R}^{3}\right)$ with at most k elements of \mathcal{A} lying below it. Let $(\leq k)$ level $^{-}(\mathcal{A})$ denote the portion of the elements of \mathcal{A} in both \mathcal{D}^{-}and the $(\leq k)$-lower-level-region of \mathcal{A}.

Lemma 14 Let \mathcal{A} be an arrangement of straight lines, segments or rays. Then:

$$
\begin{aligned}
& \text { 1. } \mathcal{V}_{k}^{+}(O, \mathcal{A})=\mathcal{T}\left[(\leq k) \text { level }^{+}(\mathcal{T}[\mathcal{A}])\right] \\
& \text { 2. } \mathcal{V}_{k}^{-}(O, \mathcal{A})=\mathcal{T}\left[(\leq k) \text { level }^{-}(\mathcal{T}[\mathcal{A}])\right]
\end{aligned}
$$

Proof. We prove 1, the proof of 2 is similar.
Let $p \in \mathcal{D}^{+}$be such that $p \in D$ for some $D \in \mathcal{A}$, and let L be the line that contains p and O. Then $p \in L^{+}, \mathcal{T}[D] \in \mathcal{T}[\mathcal{A}]$ and $\mathcal{T}(p) \in \mathcal{T}[D]$. As \mathcal{T} preserves incidences, by Proposition 13 and Proposition 9 , the line segment between O and p crosses at most k elements of \mathcal{A}, if and only if, there are at most k elements of $\mathcal{T}[\mathcal{A}]$ laying above $\mathcal{T}(p)$.

2.2 Proofs of results in \mathbb{R}^{2}

Theorem 15 (Everett et al. [10]) Let \mathcal{A} be an arrangement of n lines in the plane. Then $(\leq k)$ level (\mathcal{A}) can be computed in $O(n \log n+k n)$ time.

We use Theorem 15 in order to prove Theorem 2.
Proof. [Proof of Theorem 2 Without loss of generality, we may assume that p is at the origin, otherwise p and the elements of \mathcal{A} can be translated. We also may assume that the x-axis does not contain an element of \mathcal{A} or an intersection between two elements of \mathcal{A}, otherwise, the elements of \mathcal{A} can be rotated.

By Proposition 7, $\mathcal{T}[\mathcal{A}]$ is an arrangement of n straight lines. Thus, as the k-crossing visibility of O on \mathcal{A} can be obtained from $\mathcal{V}_{k}^{+}(O, \mathcal{A})$ and $\mathcal{V}_{k}^{-}(O, \mathcal{A})$, this proof follows from Lemma 14 and Theorem 15 .

Let \mathcal{A} be an arrangement of straight lines, rays and segments. The vertical decomposition (also known as trapezoidal decomposition) of \mathcal{A} is obtained by erecting vertical segments upwards and downwards from each vertex in \mathcal{A} and extend them until they meet another line or all the way to infinity.

Lemma 16 Let \mathcal{A} be an arrangement of n straight lines, rays and segments. Then $(\leq k)$ level (\mathcal{A}) can be obtained from a vertical decomposition of \mathcal{A} in $O(k n)$ time.

Proof. Suppose that the vertical decomposition of A is known. Then for each vertex, extend a vertical segment upwards until it reaches $k+1$ elements of \mathcal{A} or its way to infinity; such vertex is in $(\leq k)$ level (\mathcal{A}) if and only if the vertical segment reaches its way to infinity.

Proof. [Another proof of Theorem 1] As in the proof of Theorem 2, we may assume that p is at the origin and the x-axis does not contain edges of P. By Proposition 10, $\mathcal{T}[P]$ is an arrangement of at most $2 n$ line segments or rays. Thus, as the k-crossing visibility of O on P can be obtained from $\mathcal{V}_{k}^{+}(O, P)$ and $\mathcal{V}_{k}^{-}(O, P)$, by Lemma 14 and Lemma 16 it is enough to obtain the vertical decomposition of $\mathcal{T}[P] \cap \mathcal{D}^{+}$and $\mathcal{T}[P] \cap \mathcal{D}^{-}$in linear time; we do this for $\mathcal{T}[P] \cap \mathcal{D}^{+}$, the other case is similar.
Let $L: y+c=0$ be a horizontal line, high enough that all the endpoints of $\mathcal{T}[P] \cap \mathcal{D}^{+}$are below L. Let $L^{\prime}=\mathcal{T}[L]$ and note that L^{\prime} is a horizontal line with equation $c y+1=0$. Suppose that the points in P above L^{\prime} are blue and the others are red. Let P^{\prime} be the polygon in \mathcal{D}^{+}obtained from P by scaling vertically its red part, keeping the endpoints on L^{\prime} fixed.

In 7] Chazelle prove that the vertical decomposition of a polygon can be computed in linear time (see also Amato et al. [3). Thus, as P^{\prime} is contained in \mathcal{D}^{+}, by Proposition $10 \mathcal{T}\left[P^{\prime}\right]$ is a polygon, and the vertical decomposition of $\mathcal{T}\left[P^{\prime}\right]$ can be computed in linear time. Note that a point $\mathcal{T}(q)$ in $\mathcal{T}[P] \cap \mathcal{D}^{+}$is below L if and only if q is blue. Thus the vertical decomposition of $\mathcal{T}[P] \cap \mathcal{D}^{+}$can be obtained from the vertical decomposition of $\mathcal{T}\left[P^{\prime}\right]$ below L.

Proof. [Proof of Proposition 3] In [2] Alon et al. prove that the maximum combinatorial complexity of the $(\leq k)$-level on arrangements of n straight lines in the plane is $\theta(n k)$. Without loss of generality, suppose that the arrangement \mathcal{A} reaches this bound and the $(\leq k)$-level of \mathcal{A} is contained in \mathcal{D}^{+}. Thus, the combinatorial complexity of $(\leq k)$ level $^{+}(\mathcal{A})$ is $\theta(n k)$ and by Lemma 14 the combinatorial complexity of $\mathcal{V}_{k}^{+}(O, \mathcal{T}[\mathcal{A}])$ is also $\theta(n k)$.

3 Results in \mathbb{R}^{3}

Let \mathcal{D} be the set of points $(x, y, z) \in \mathbb{R}^{3}$ such that $z \neq 0$. Throughout this section, O denotes the point $(0,0,0) \in \mathbb{R}^{3}$ and \mathcal{T} denotes the transformation \mathcal{T} : $\mathcal{D} \rightarrow \mathcal{D}$ be such that

$$
\mathcal{T}((x, y, z))=(x / z, y / z, 1 / z)
$$

The proofs of Proposition 17, Proposition 18, Proposition 19, Proposition 20, Proposition 21 and Lemma 22, can be obtained as in Section 2.

Proposition $17 \mathcal{T}$ is self-inverse.

Proposition $18 \mathcal{T}$ sends planes to planes. More precisely, if π is the plane in \mathcal{D} with equation $a x+b y+$ $c z+d=0$ then $\mathcal{T}[\pi]$ is the plane in \mathcal{D} with equation $a x+b y+d z+c=0$.

Proposition $19 \mathcal{T}$ preserve incidences between points and planes. More precisely the point p is in the plane π if and only if $\mathcal{T}(p)$ is in the plane $\mathcal{T}[\pi]$.

Given a plane π in \mathcal{D}, we denote by π^{+}the set of points in π whose third coordinate is greater than zero, and we denote by π^{-}the set of points in π whose third coordinate is less than zero.

Proposition 20 Let π be a plane in \mathcal{D}. Then $\mathcal{T}\left[\pi^{+}\right]=\mathcal{T}[\pi]^{+}$and $\mathcal{T}\left[\pi^{-}\right]=\mathcal{T}[\pi]^{-}$. Moreover, If $p_{1}, p_{2}, \ldots, p_{k}$ are in π^{+}(or they are in π^{-}) ordered by their distance to the plane $z=0$ from the closest to the furthest, then $\mathcal{T}\left(p_{1}\right), \mathcal{T}\left(p_{2}\right), \ldots, \mathcal{T}\left(p_{k}\right)$ are in $\mathcal{T}\left[\pi^{+}\right]$(or they are in $\mathcal{T}\left[\pi^{-}\right]$, respectively), ordered by their distance to the plane $z=0$ from the furthest to the closest.

Given a $D \subset \mathcal{D}$ we denote by \bar{D} the closure of D in \mathbb{R}^{3}.

Proposition 21 Let L be a straight line in \mathcal{D}. Then $O \in \bar{L}$ if and only if $\mathcal{T}[L]$ is a vertical line.

Lemma 22 Let \mathcal{A} be an arrangement of planes. Then:

$$
\begin{aligned}
& \text { 1. } \mathcal{V}_{k}^{+}(O, \mathcal{A})=\mathcal{T}\left[(\leq k) \text { level }^{+}(\mathcal{T}[\mathcal{A}])\right] \\
& \text { 2. } \mathcal{V}_{k}^{-}(O, \mathcal{A})=\mathcal{T}\left[(\leq k) \text { level }^{-}(\mathcal{T}[\mathcal{A}])\right]
\end{aligned}
$$

The proofs of Theorem 4 and Proposition 5 follows from Theorem 23 and Theorem 24, in a similar way as in the proof of Theorem 2 and the proof of Proposition 3 in Section 2

Theorem 23 (Chan [6]) Let \mathcal{A} be an arrangement of n planes in \mathbb{R}^{3}. Then $(\leq k)$ level (\mathcal{A}) can be computed in $O\left(n \log n+k^{2} n\right)$ expected time.

Theorem 24 (Clarkson et al. [8]) Let $k \geq 1$. Then the maximum combinatorial complexity of $(\leq k)$ level on arrangements of n hyperplanes in \mathbb{R}^{d} is $\theta\left(n^{\lfloor d / 2\rfloor} k^{\lceil d / 2\rceil}\right)$.

References

[1] Oswin Aichholzer, Ruy Fabila-Monroy, David Flores-Peñaloza, Thomas Hackl, Jorge Urrutia, and Birgit Vogtenhuber. Modem illumination of monotone polygons. Computational Geometry, 68:101-118, 2018.
[2] Noga Alon and Ervin Györi. The number of small semispaces of a finite set of points in the plane. Journal of Combinatorial Theory, Series A, 41(1):154-157, 1986.
[3] Nancy M Amato, Michael T Goodrich, and Edgar A Ramos. A randomized algorithm for triangulating a simple polygon in linear time. Discrete ξ^{3} Computational Geometry, 26(2):245-265, 2001.
[4] Yeganeh Bahoo, Prosenjit Bose, Stephane Durocher, and Thomas Shermer. Computing the k-crossing visibility region of a point in a polygon. In Charles J. Colbourn, Roberto Grossi, and Nadia Pisanti, editors, Combinatorial Algorithms, pages 10-21, Cham, 2019. Springer International Publishing.
[5] Antonio Bajuelos, Santiago Canales, Gregorio Hernández, and Mafalda Martins. A hybrid metaheuristic strategy for covering with wireless devices. J. Univers. Comput. Sci., 18(14):1906-1932, 2012.
[6] Timothy Chan. Random sampling, halfspace range reporting, and construction of $(\leq k)$-levels in three dimensions. SIAM Journal on Computing, 30(2):561-575, 2000.
[7] Bernard Chazelle. Triangulating a simple polygon in linear time. Discrete \mathcal{B} Computational Geometry, 6(3):485-524, 1991.
[8] Kenneth Clarkson and Peter Shor. Applications of random sampling in computational geometry, ii. Discrete \mathcal{G} Computational Geometry, 4(5):387421, 1989.
[9] James Dean, Andrzej Lingas, and Jörg-Rüdiger Sack. Recognizing polygons, or how to spy. The Visual Computer, 3(6):344-355, 1988.
[10] Hazel Everett, Jean-Marc Robert, and Marc van Kreveld. An optimal algorithm for the ($\leq k$)-levels, with applications to separation and transversal problems. International Journal of Computational Geometry Applications, 06(03):247-261, 1996.
[11] Subir Kumar Ghosh. Visibility algorithms in the plane. Cambridge university press, 2007.
[12] Naji Mouawad and Thomas Shermer. The superman problem. The Visual Computer, 10(8):459473, 1994.
[13] Joseph O'Rourke et al. Art gallery theorems and algorithms, volume 57. Oxford University Press Oxford, 1987.

[^0]: *Email: frduquep@unal.edu.co. Research supported by the Universidad Nacional de Colombia research, grant HERMES58357.

