Computing k-Crossing Visibility through k-levels

Frank Duque^{*1}

 $^1\mathrm{Escuela}$ de Matemáticas, Universidad Nacional de Colombia, Medellín, Colombia

1 Introduction

The notion of visibility has been used extensively in Computational Geometry, in the context of the art gallery problem [13, 11]. The development of wireless network connections has motivated the study of a new kind of visibility, where the line of visibility can cross k obstacles [1].

Let \mathcal{A} be an arrangement of straight lines and segments in \mathbb{R}^2 (or planes in \mathbb{R}^3). The k-crossing visibility on \mathcal{A} of a point p, denoted by $\mathcal{V}_k(p, \mathcal{A})$, is the set of points q on elements of \mathcal{A} such that the segment pqintersects at most k elements of \mathcal{A} . See Figure 1.

Figure 1: The blue points and segments illustrate the 2-crossing visibility of the red point on an arrangement of lines.

Some early works on k-crossing visibility are [12, 9, 5]. In [4] recently Bahoo et al. introduced an algorithm that computes $\mathcal{V}_k(p, \mathcal{A})$ in O(kn)-time, where \mathcal{A} consists of the edges of a polygon.

Theorem 1 (Bahoo et al. [4]) Given a simple polygon P with n vertices and a query point p in P, the region of P that is k-crossing visible from p, can be computed in O(kn) time.

In this work we obtain another proof of Theorem 1 and we prove Theorem 2, Theorem 4, Proposition 3 and Proposition 5. **Theorem 2** Let \mathcal{A} be an arrangement of n lines in the plane, and let p be a query point. Then $\mathcal{V}_k(p, \mathcal{A})$ can be computed in $O(n \log n + kn)$ time.

Given an arrangement \mathcal{A} of straight lines, rays and segments in the plane (or planes in \mathbb{R}^3), the combinatorial complexity of \mathcal{A} , is the total number of vertices and edges (and faces) defined by \mathcal{A} .

Proposition 3 The maximum combinatorial complexity of the k-crossing visibility on arrangements of n straight lines in the plane is $\theta(kn)$.

Theorem 4 Let \mathcal{A} be an arrangement of n planes in \mathbb{R}^3 , and let p be a query point. Then $\mathcal{V}_k(p, \mathcal{A})$ can be computed in $O(n \log n + k^2 n)$ expected time.

Proposition 5 The maximum combinatorial complexity of the k-crossing visibility on arrangements of n planes in \mathbb{R}^3 is $\theta(k^2n)$.

Note that, by Proposition 3 and Proposition 5, Theorem 2 and Theorem 4 are optimal for $k = \Omega(\log n)$ and $k = \Omega(\sqrt{\log n})$, respectively.

Given an arrangement \mathcal{A} of objects in \mathbb{R}^2 (or \mathbb{R}^3), the $(\leq k)$ -level-region of \mathcal{A} is the set of points in \mathbb{R}^2 (or \mathbb{R}^3) with at most k elements of \mathcal{A} lying above it. In the following we denote by $(\leq k)$ level (\mathcal{A}) , to the portion of the elements of \mathcal{A} that are in the $(\leq k)$ -level-region of \mathcal{A} .

Let \mathcal{T} be the transformation

$$\mathcal{T}((x,y)) = (x/y, 1/y) \quad \text{in the } \mathbb{R}^2 \text{ case, or}$$

$$\mathcal{T}((x,y,z)) = (x/z, y/z, 1/z) \quad \text{in the } \mathbb{R}^3 \text{ case.}$$

In this paper we obtain a linear time reduction, of the problem of obtaining $\mathcal{V}_k(p, \mathcal{A})$ to the problem of obtaining $(\leq k) level(\mathcal{A})$, by applying \mathcal{T} . This reduction can be easily adapted for obtaining k-crossing visibilities on another arrangements whose $(\leq k)$ -level is known.

2 Results in \mathbb{R}^2

Let \mathcal{D} be the set of points $(x, y) \in \mathbb{R}^2$ such that $y \neq 0$. Throughout this section, O denotes the point $(0, 0) \in \mathbb{R}^2$ and \mathcal{T} denotes the transformation $\mathcal{T} : \mathcal{D} \to \mathcal{D}$ such that $\mathcal{T}((x, y)) = (x/y, 1/y)$.

^{*}Email: frduquep@unal.edu.co. Research supported by the Universidad Nacional de Colombia research, grant HERMES-58357.

In this section, we prove that \mathcal{T} determines a bridge between k-crossing visibility and $(\leq k)$ -levels in \mathbb{R}^2 . Then, we use this result to prove Theorem 1, Theorem 2 and Proposition 3.

2.1 Properties of T

Given $D \subset \mathcal{D}$ we denote by $\mathcal{T}[D]$ the image of Dunder \mathcal{T} . We also denote by $\mathcal{T}[\mathcal{A}]$ the set images of the elements of \mathcal{A} under \mathcal{T} . In this section, we first prove several properties of \mathcal{T} . Then, we determine $\mathcal{T}[D]$ for different instances of D. Finally, we prove that $\mathcal{V}_k(O, \mathcal{A})$ can be obtained from $(\leq k) level(\mathcal{T}[\mathcal{A}])$.

Proposition 6 \mathcal{T} is self-inverse.

Proof. $\mathcal{T}o\mathcal{T}((x,y)) = \mathcal{T}((x/y,1/y)) = (x,y).$

Proposition 7 \mathcal{T} sends straight lines to straight lines. More precisely, if *L* is the straight line in \mathcal{D} with equation ax + by + c = 0 then $\mathcal{T}[L]$ is the straight line in \mathcal{D} with equation ax + cy + b = 0.

Proof. Let L' be the straight line with equation ax + cy+b = 0. If (x_0, y_0) is in L then $ax_0+by_0+c = 0$; thus, as $a\frac{x_0}{y_0}+c\frac{1}{y_0}+b = 0$, then $\mathcal{T}(x_0, y_0)$ is in L'. Similarly, if (x_0, y_0) is in L' then $\mathcal{T}^{-1}(x_0, y_0) = \mathcal{T}(x_0, y_0)$ is in L.

Proposition 8 \mathcal{T} preserve incidences between points and lines. More precisely the point p is in the straight line L if and only if $\mathcal{T}(p)$ is in the straight line $\mathcal{T}[L]$.

Proof. Let $p = (x_0, y_0)$ be a point in \mathcal{D} and let L : ax + by + c = 0 be a straight line in \mathcal{D} . This proof follows from the fact that (x_0, y_0) satisfies ax + by + c = 0 if and only if $\left(\frac{x_0}{y_0}, \frac{1}{y_0}\right)$ satisfies $\mathcal{T}[L] : ax + cy + b = 0$.

Given a line L in \mathcal{D} , we denote by L^+ the set of points in L whose second coordinate is greater than zero, and we denote by L^- the set of points in L whose second coordinate is less than zero.

Proposition 9 Let L be a straight line in \mathcal{D} . Then $\mathcal{T}[L^+] = \mathcal{T}[L]^+$ and $\mathcal{T}[L^-] = \mathcal{T}[L]^-$. Moreover, If p_1, p_2, \ldots, p_k are in L^+ (or they are in L^-) ordered by their distance to the x-axis from the closest to the furthest, then $\mathcal{T}(p_1), \mathcal{T}(p_2), \ldots, \mathcal{T}(p_k)$ are in $\mathcal{T}[L^+]$ (or they are in $\mathcal{T}[L^-]$, respectively), ordered by their distance to the x-axis from the furthest to the closest.

Proof. As \mathcal{T} sends straight lines to straight lines and it does not change the sign of the second coordinate, then $\mathcal{T}[L^+] = \mathcal{T}[L]^+$ and $\mathcal{T}[L^-] = \mathcal{T}[L]^-$. If the second coordinates of p_i and p_j are y_i and y_j , respectively, then the second coordinates of $\mathcal{T}(p_i)$ and $\mathcal{T}(p_j)$ are $1/y_i$ and $1/y_j$, respectively. This proof follows from the fact that $|y_i| < |y_j|$ if and only if $|1/y_i| > |1/y_j|$. \Box Let \mathcal{D}^+ denote the set of points in \mathcal{D} whose second coordinate is greater than zero, and let \mathcal{D}^- denote the set of points in \mathcal{D} whose second coordinate is less than zero. The proofs of Proposition 10 and Proposition 11 follows from Proposition 9.

Proposition 10 Let D be a line segment contained in a straight line L, whose endpoints are p and q.

- If both p and q are in \mathcal{D}^+ (\mathcal{D}^-), then $\mathcal{T}[D]$ is the line segment contained in \mathcal{D}^+ (\mathcal{D}^-) whose endpoints are $\mathcal{T}(p)$ and $\mathcal{T}(q)$.
- If p is in the x-axis and q is in D⁺ (D⁻), then T [D] is the ray contained in D⁺ (D⁻), defined by the straight line T [L] and the point T(q).

Given a $D \subset \mathcal{D}$ we denote by \overline{D} the closure of D in \mathbb{R}^2 .

Proposition 11 Let D be a no horizontal ray contained in a straight line L, whose endpoint is p.

- If both p and D are in \mathcal{D}^+ (\mathcal{D}^-) , then $\mathcal{T}[D]$ is the line segment contained in \mathcal{D}^+ (\mathcal{D}^-) , whose endpoints are $\mathcal{T}(p)$ and the intersection of $\overline{\mathcal{T}[L]}$ with the x-axis.
- If p is in the x-axis and D is in D⁺ (D[−]), then T [D] is the ray defined by the part of the straight line T [L] in D⁺ (D[−]).

Proposition 12 Let D be a horizontal ray contained in a straight line L whose endpoint is p. If D is contained in \mathcal{D}^+ (\mathcal{D}^-), then $\mathcal{T}[D]$ is the horizontal ray in \mathcal{D}^+ (\mathcal{D}^-), defined by the straight line $\mathcal{T}[L]$ and the point $\mathcal{T}(p)$. If D is contained in \mathcal{D}^+ , then D and $\mathcal{T}[D]$ have the same direction; in the other case, Dand $\mathcal{T}[D]$ have opposite direction.

Proof. If *L* has equation by + c = 0 then $\mathcal{T}[L]$ is the horizontal line with equation cy + b = 0.

From Proposition 7, Proposition 10, Proposition 11 and Proposition 12 we conclude that: If D is a straight line, ray or segment contained in \mathcal{D}^+ (\mathcal{D}^-) then $\mathcal{T}[D]$ is a straight line, ray or segment contained in \mathcal{D}^+ (\mathcal{D}^-).

Proposition 13 Let *L* be a straight line in \mathcal{D} . Then $O \in \overline{L}$ if and only if $\mathcal{T}[L]$ is a vertical line.

Proof. This proof follows from the fact that \overline{L} has equation ax + by = 0 if and only if $\mathcal{T}[L]$ has equation ax + b = 0

Let $\mathcal{V}_k^+(O, \mathcal{A})$ denote the portions of the elements of $\mathcal{V}_k(O, \mathcal{A})$ in \mathcal{D}^+ , *i.e.*

$$\mathcal{V}_{k}^{+}\left(O,\mathcal{A}\right) = \left\{ D \cap \mathcal{D}^{+} : D \in \mathcal{V}_{k}\left(O,\mathcal{A}\right) \right\}$$

Similarly, let $\mathcal{V}_{k}^{-}(O, \mathcal{A})$ denote the portions of $\mathcal{V}_{k}(O, \mathcal{A})$ in \mathcal{D}^{-} , *i.e.*

$$\mathcal{V}_{k}^{-}(O,\mathcal{A}) = \left\{ D \cap \mathcal{D}^{-} : D \in \mathcal{V}_{k}(O,\mathcal{A}) \right\}$$

Let $(\leq k)level^+(\mathcal{A})$ denote the portion of the elements of $(\leq k)level(\mathcal{A})$ in \mathcal{D}^+ , *i.e.*

$$(\leq k)level^+(\mathcal{A}) = \left\{ D \cap \mathcal{D}^+ : D \in (\leq k)level(\mathcal{A}) \right\}$$

The $(\leq k)$ -lower-level-region of \mathcal{A} is the set of points in \mathbb{R}^2 (\mathbb{R}^3) with at most k elements of \mathcal{A} lying below it. Let $(\leq k) level^-$ (\mathcal{A}) denote the portion of the elements of \mathcal{A} in both \mathcal{D}^- and the $(\leq k)$ -lower-level-region of \mathcal{A} .

Lemma 14 Let \mathcal{A} be an arrangement of straight lines, segments or rays. Then:

1.
$$\mathcal{V}_{k}^{+}(O,\mathcal{A}) = \mathcal{T}[(\leq k)level^{+}(\mathcal{T}[\mathcal{A}])].$$

2. $\mathcal{V}_{k}^{-}(O,\mathcal{A}) = \mathcal{T}[(\leq k)level^{-}(\mathcal{T}[\mathcal{A}])].$

Proof. We prove 1, the proof of 2 is similar.

Let $p \in \mathcal{D}^+$ be such that $p \in D$ for some $D \in \mathcal{A}$, and let L be the line that contains p and O. Then $p \in L^+$, $\mathcal{T}[D] \in \mathcal{T}[\mathcal{A}]$ and $\mathcal{T}(p) \in \mathcal{T}[D]$. As \mathcal{T} preserves incidences, by Proposition 13 and Proposition 9, the line segment between O and p crosses at most k elements of \mathcal{A} , if and only if, there are at most kelements of $\mathcal{T}[\mathcal{A}]$ laying above $\mathcal{T}(p)$. \Box

2.2 Proofs of results in \mathbb{R}^2

Theorem 15 (Everett et al. [10]) Let \mathcal{A} be an arrangement of n lines in the plane. Then $(\leq k)$ level (\mathcal{A}) can be computed in $O(n \log n + kn)$ time.

We use Theorem 15 in order to prove Theorem 2.

Proof. [Proof of Theorem 2] Without loss of generality, we may assume that p is at the origin, otherwise pand the elements of \mathcal{A} can be translated. We also may assume that the *x*-axis does not contain an element of \mathcal{A} or an intersection between two elements of \mathcal{A} , otherwise, the elements of \mathcal{A} can be rotated.

By Proposition 7, $\mathcal{T}[\mathcal{A}]$ is an arrangement of n straight lines. Thus, as the k-crossing visibility of O on \mathcal{A} can be obtained from $\mathcal{V}_k^+(O, \mathcal{A})$ and $\mathcal{V}_k^-(O, \mathcal{A})$, this proof follows from Lemma 14 and Theorem 15. \Box

Let \mathcal{A} be an arrangement of straight lines, rays and segments. The vertical decomposition (also known as trapezoidal decomposition) of \mathcal{A} is obtained by erecting vertical segments upwards and downwards from each vertex in \mathcal{A} and extend them until they meet another line or all the way to infinity.

Lemma 16 Let \mathcal{A} be an arrangement of n straight lines, rays and segments. Then $(\leq k)$ level (\mathcal{A}) can be obtained from a vertical decomposition of \mathcal{A} in O(kn) time.

Proof. Suppose that the vertical decomposition of A is known. Then for each vertex, extend a vertical segment upwards until it reaches k + 1 elements of A or its way to infinity; such vertex is in $(\leq k) level (A)$ if and only if the vertical segment reaches its way to infinity. \Box

Proof. [Another proof of Theorem 1] As in the proof of Theorem 2, we may assume that p is at the origin and the *x*-axis does not contain edges of P. By Proposition 10, $\mathcal{T}[P]$ is an arrangement of at most 2n line segments or rays. Thus, as the *k*-crossing visibility of O on P can be obtained from $\mathcal{V}_k^+(O, P)$ and $\mathcal{V}_k^-(O, P)$, by Lemma 14 and Lemma 16, it is enough to obtain the vertical decomposition of $\mathcal{T}[P] \cap \mathcal{D}^+$ and $\mathcal{T}[P] \cap \mathcal{D}^-$ in linear time; we do this for $\mathcal{T}[P] \cap \mathcal{D}^+$, the other case is similar.

Let L: y + c = 0 be a horizontal line, high enough that all the endpoints of $\mathcal{T}[P] \cap \mathcal{D}^+$ are below L. Let $L' = \mathcal{T}[L]$ and note that L' is a horizontal line with equation cy + 1 = 0. Suppose that the points in Pabove L' are blue and the others are red. Let P' be the polygon in \mathcal{D}^+ obtained from P by scaling vertically its red part, keeping the endpoints on L' fixed.

In [7] Chazelle prove that the vertical decomposition of a polygon can be computed in linear time (see also Amato et al. [3]). Thus, as P' is contained in \mathcal{D}^+ , by Proposition 10 $\mathcal{T}[P']$ is a polygon, and the vertical decomposition of $\mathcal{T}[P']$ can be computed in linear time. Note that a point $\mathcal{T}(q)$ in $\mathcal{T}[P] \cap \mathcal{D}^+$ is below L if and only if q is blue. Thus the vertical decomposition of $\mathcal{T}[P] \cap \mathcal{D}^+$ can be obtained from the vertical decomposition of $\mathcal{T}[P']$ below L. \Box

Proof. [Proof of Proposition 3] In [2] Alon et al. prove that the maximum combinatorial complexity of the $(\leq k)$ -level on arrangements of n straight lines in the plane is $\theta(nk)$. Without loss of generality, suppose that the arrangement \mathcal{A} reaches this bound and the $(\leq k)$ -level of \mathcal{A} is contained in \mathcal{D}^+ . Thus, the combinatorial complexity of $(\leq k)level^+(\mathcal{A})$ is $\theta(nk)$ and by Lemma 14 the combinatorial complexity of $\mathcal{V}_k^+(O, \mathcal{T}[\mathcal{A}])$ is also $\theta(nk)$. \Box

3 Results in \mathbb{R}^3

Let \mathcal{D} be the set of points $(x, y, z) \in \mathbb{R}^3$ such that $z \neq 0$. Throughout this section, O denotes the point $(0,0,0) \in \mathbb{R}^3$ and \mathcal{T} denotes the transformation $\mathcal{T} : \mathcal{D} \to \mathcal{D}$ be such that

$$\mathcal{T}\left((x, y, z)\right) = (x/z, y/z, 1/z)$$

The proofs of Proposition 17, Proposition 18, Proposition 19, Proposition 20, Proposition 21 and Lemma 22, can be obtained as in Section 2.

Proposition 17 \mathcal{T} is self-inverse.

Proposition 18 \mathcal{T} sends planes to planes. More precisely, if π is the plane in \mathcal{D} with equation ax + by + cz + d = 0 then $\mathcal{T}[\pi]$ is the plane in \mathcal{D} with equation ax + by + dz + c = 0.

Proposition 19 \mathcal{T} preserve incidences between points and planes. More precisely the point p is in the plane π if and only if $\mathcal{T}(p)$ is in the plane $\mathcal{T}[\pi]$.

Given a plane π in \mathcal{D} , we denote by π^+ the set of points in π whose third coordinate is greater than zero, and we denote by π^- the set of points in π whose third coordinate is less than zero.

Proposition 20 Let π be a plane in \mathcal{D} . Then $\mathcal{T}[\pi^+] = \mathcal{T}[\pi]^+$ and $\mathcal{T}[\pi^-] = \mathcal{T}[\pi]^-$. Moreover, If p_1, p_2, \ldots, p_k are in π^+ (or they are in π^-) ordered by their distance to the plane z = 0 from the closest to the furthest, then $\mathcal{T}(p_1), \mathcal{T}(p_2), \ldots, \mathcal{T}(p_k)$ are in $\mathcal{T}[\pi^+]$ (or they are in $\mathcal{T}[\pi^-]$, respectively), ordered by their distance to the plane z = 0 from the furthest to the closest.

Given a $D \subset \mathcal{D}$ we denote by \overline{D} the closure of D in \mathbb{R}^3 .

Proposition 21 Let *L* be a straight line in \mathcal{D} . Then $O \in \overline{L}$ if and only if $\mathcal{T}[L]$ is a vertical line.

Lemma 22 Let \mathcal{A} be an arrangement of planes. Then:

1. $\mathcal{V}_{k}^{+}(O, \mathcal{A}) = \mathcal{T}[(\leq k)level^{+}(\mathcal{T}[\mathcal{A}])].$ 2. $\mathcal{V}_{k}^{-}(O, \mathcal{A}) = \mathcal{T}[(\leq k)level^{-}(\mathcal{T}[\mathcal{A}])].$

The proofs of Theorem 4 and Proposition 5 follows from Theorem 23 and Theorem 24, in a similar way as in the proof of Theorem 2 and the proof of Proposition 3 in Section 2.

Theorem 23 (Chan [6]) Let \mathcal{A} be an arrangement of n planes in \mathbb{R}^3 . Then $(\leq k)$ level (\mathcal{A}) can be computed in $O(n \log n + k^2 n)$ expected time.

Theorem 24 (Clarkson et al. [8]) Let $k \geq 1$. Then the maximum combinatorial complexity of $(\leq k)$ -level on arrangements of n hyperplanes in \mathbb{R}^d is $\theta(n^{\lfloor d/2 \rfloor}k^{\lceil d/2 \rceil})$.

References

 Oswin Aichholzer, Ruy Fabila-Monroy, David Flores-Peñaloza, Thomas Hackl, Jorge Urrutia, and Birgit Vogtenhuber. Modem illumination of monotone polygons. *Computational Geometry*, 68:101–118, 2018.

- [2] Noga Alon and Ervin Györi. The number of small semispaces of a finite set of points in the plane. *Journal of Combinatorial Theory, Series* A, 41(1):154–157, 1986.
- [3] Nancy M Amato, Michael T Goodrich, and Edgar A Ramos. A randomized algorithm for triangulating a simple polygon in linear time. *Discrete & Computational Geometry*, 26(2):245–265, 2001.
- [4] Yeganeh Bahoo, Prosenjit Bose, Stephane Durocher, and Thomas Shermer. Computing the k-crossing visibility region of a point in a polygon. In Charles J. Colbourn, Roberto Grossi, and Nadia Pisanti, editors, *Combinatorial Algorithms*, pages 10–21, Cham, 2019. Springer International Publishing.
- [5] Antonio Bajuelos, Santiago Canales, Gregorio Hernández, and Mafalda Martins. A hybrid metaheuristic strategy for covering with wireless devices. J. Univers. Comput. Sci., 18(14):1906–1932, 2012.
- [6] Timothy Chan. Random sampling, halfspace range reporting, and construction of $(\leq k)$ -levels in three dimensions. SIAM Journal on Computing, 30(2):561–575, 2000.
- Bernard Chazelle. Triangulating a simple polygon in linear time. Discrete & Computational Geometry, 6(3):485-524, 1991.
- [8] Kenneth Clarkson and Peter Shor. Applications of random sampling in computational geometry, ii. Discrete & Computational Geometry, 4(5):387– 421, 1989.
- [9] James Dean, Andrzej Lingas, and Jörg-Rüdiger Sack. Recognizing polygons, or how to spy. *The Visual Computer*, 3(6):344–355, 1988.
- [10] Hazel Everett, Jean-Marc Robert, and Marc van Kreveld. An optimal algorithm for the $(\leq k)$ -levels, with applications to separation and transversal problems. International Journal of Computational Geometry Applications, 06(03):247-261, 1996.
- [11] Subir Kumar Ghosh. Visibility algorithms in the plane. Cambridge university press, 2007.
- [12] Naji Mouawad and Thomas Shermer. The superman problem. *The Visual Computer*, 10(8):459– 473, 1994.
- [13] Joseph O'Rourke et al. Art gallery theorems and algorithms, volume 57. Oxford University Press Oxford, 1987.