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Computing k-Crossing Visibility through k-levels
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1 Introduction

The notion of visibility has been used extensively in
Computational Geometry, in the context of the art
gallery problem [13, 11]. The development of wireless
network connections has motivated the study of a new
kind of visibility, where the line of visibility can cross
k obstacles [1].

Let A be an arrangement of straight lines and seg-
ments in R2 (or planes in R3). The k-crossing visibility
on A of a point p, denoted by Vk (p,A), is the set of
points q on elements of A such that the segment pq
intersects at most k elements of A. See Figure 1.

Figure 1: The blue points and segments illustrate the
2-crossing visibility of the red point on an arrangement
of lines.

Some early works on k-crossing visibility are [12, 9,
5]. In [4] recently Bahoo et al. introduced an algo-
rithm that computes Vk (p,A) in O(kn)-time, where
A consists of the edges of a polygon.

Theorem 1 (Bahoo et al. [4]) Given a simple
polygon P with n vertices and a query point p in P ,
the region of P that is k-crossing visible from p, can
be computed in O(kn) time.

In this work we obtain another proof of Theorem 1
and we prove Theorem 2, Theorem 4, Proposition 3
and Proposition 5.
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Theorem 2 Let A be an arrangement of n lines in
the plane, and let p be a query point. Then Vk (p,A)
can be computed in O(n log n+ kn) time.

Given an arrangement A of straight lines, rays and
segments in the plane (or planes in R3), the combina-
torial complexity of A, is the total number of vertices
and edges (and faces) defined by A.

Proposition 3 The maximum combinatorial com-
plexity of the k-crossing visibility on arrangements
of n straight lines in the plane is θ(kn).

Theorem 4 Let A be an arrangement of n planes in
R3, and let p be a query point. Then Vk (p,A) can be
computed in O(n log n+ k2n) expected time.

Proposition 5 The maximum combinatorial com-
plexity of the k-crossing visibility on arrangements
of n planes in R3 is θ(k2n).

Note that, by Proposition 3 and Proposition 5, The-
orem 2 and Theorem 4 are optimal for k = Ω(log n)
and k = Ω(

√
log n), respectively.

Given an arrangement A of objects in R2 (or R3),
the (≤ k)-level-region of A is the set of points in R2 (or
R3) with at most k elements of A lying above it. In the
following we denote by (≤ k)level (A), to the portion
of the elements of A that are in the (≤ k)-level-region
of A.

Let T be the transformation

T ((x, y)) = (x/y, 1/y) in the R2 case, or

T ((x, y, z)) = (x/z, y/z, 1/z) in the R3 case.

In this paper we obtain a linear time reduction, of
the problem of obtaining Vk (p,A) to the problem of
obtaining (≤ k)level (A), by applying T . This reduc-
tion can be easily adapted for obtaining k-crossing
visibilities on another arrangements whose (≤ k)-level
is known.

2 Results in R2

Let D be the set of points (x, y) ∈ R2 such that y ̸= 0.
Throughout this section, O denotes the point (0, 0) ∈
R2 and T denotes the transformation T : D → D such
that T ((x, y)) = (x/y, 1/y) .
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In this section, we prove that T determines a bridge
between k-crossing visibility and (≤ k)-levels in R2.
Then, we use this result to prove Theorem 1, Theo-
rem 2 and Proposition 3.

2.1 Properties of T

Given D ⊂ D we denote by T [D] the image of D
under T . We also denote by T [A] the set images of the
elements of A under T . In this section, we first prove
several properties of T . Then, we determine T [D]
for different instances of D. Finally, we prove that
Vk (O,A) can be obtained from (≤ k)level (T [A]).

Proposition 6 T is self-inverse.

Proof. T oT ((x, y)) = T ((x/y, 1/y)) = (x, y). □

Proposition 7 T sends straight lines to straight lines.
More precisely, if L is the straight line in D with
equation ax+ by+ c = 0 then T [L] is the straight line
in D with equation ax+ cy + b = 0.

Proof. Let L′ be the straight line with equation ax+
cy+b = 0. If (x0, y0) is in L then ax0+by0+c = 0; thus,
as ax0

y0
+c 1

y0
+b = 0, then T (x0, y0) is in L′. Similarly,

if (x0, y0) is in L′ then T −1 (x0, y0) = T (x0, y0) is in
L. □

Proposition 8 T preserve incidences between points
and lines. More precisely the point p is in the straight
line L if and only if T (p) is in the straight line T [L].

Proof. Let p = (x0, y0) be a point in D and let L :
ax + by + c = 0 be a straight line in D. This proof
follows from the fact that (x0, y0) satisfies ax+by+c =

0 if and only if
(

x0

y0
, 1
y0

)
satisfies T [L] : ax+ cy + b =

0. □

Given a line L in D, we denote by L+ the set of
points in L whose second coordinate is greater than
zero, and we denote by L− the set of points in L whose
second coordinate is less than zero.

Proposition 9 Let L be a straight line in D. Then
T [L+] = T [L]

+
and T [L−] = T [L]

−
. Moreover, If

p1, p2, . . . , pk are in L+ (or they are in L−) ordered
by their distance to the x-axis from the closest to the
furthest, then T (p1), T (p2), . . . , T (pk) are in T [L+]
(or they are in T [L−], respectively), ordered by their
distance to the x-axis from the furthest to the closest.

Proof. As T sends straight lines to straight lines and
it does not change the sign of the second coordinate,
then T [L+] = T [L]

+
and T [L−] = T [L]

−
. If the sec-

ond coordinates of pi and pj are yi and yj , respectively,
then the second coordinates of T (pi) and T (pj) are
1/yi and 1/yj , respectively. This proof follows from the
fact that |yi| < |yj | if and only if |1/yi| > |1/yj |. □

Let D+ denote the set of points in D whose second
coordinate is greater than zero, and let D− denote the
set of points in D whose second coordinate is less than
zero. The proofs of Proposition 10 and Proposition 11
follows from Proposition 9.

Proposition 10 Let D be a line segment contained
in a straight line L, whose endpoints are p and q.

• If both p and q are in D+ (D−), then T [D] is
the line segment contained in D+ (D−) whose
endpoints are T (p) and T (q).

• If p is in the x-axis and q is in D+ (D−), then
T [D] is the ray contained in D+ (D−), defined
by the straight line T [L] and the point T (q).

Given a D ⊂ D we denote by D the closure of D in
R2.

Proposition 11 Let D be a no horizontal ray con-
tained in a straight line L, whose endpoint is p.

• If both p and D are in D+ (D−), then T [D] is
the line segment contained in D+ (D−), whose
endpoints are T (p) and the intersection of T [L]
with the x-axis.

• If p is in the x-axis and D is in D+ (D−), then
T [D] is the ray defined by the part of the straight
line T [L] in D+ (D−).

Proposition 12 Let D be a horizontal ray contained
in a straight line L whose endpoint is p. If D is
contained in D+ (D−), then T [D] is the horizontal
ray in D+ (D−), defined by the straight line T [L] and
the point T (p). If D is contained in D+, then D and
T [D] have the same direction; in the other case, D
and T [D] have opposite direction.

Proof. If L has equation by + c = 0 then T [L] is the
horizontal line with equation cy + b = 0. □

From Proposition 7, Proposition 10, Proposition 11
and Proposition 12 we conclude that: If D is a straight
line, ray or segment contained in D+ (D−) then T [D]
is a straight line, ray or segment contained in D+

(D−).

Proposition 13 Let L be a straight line in D. Then
O ∈ L if and only if T [L] is a vertical line.

Proof. This proof follows from the fact that L has
equation ax+ by = 0 if and only if T [L] has equation
ax+ b = 0 □

Let V+
k (O,A) denote the portions of the elements

of Vk (O,A) in D+, i.e.

V+
k (O,A) =

{
D ∩ D+ : D ∈ Vk (O,A)

}
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Similarly, let V−
k (O,A) denote the portions of

Vk (O,A) in D−, i.e.

V−
k (O,A) =

{
D ∩ D− : D ∈ Vk (O,A)

}
Let (≤ k)level+ (A) denote the portion of the elements
of (≤ k)level (A) in D+, i.e.

(≤ k)level+ (A) =
{
D ∩ D+ : D ∈ (≤ k)level (A)

}
The (≤ k)-lower-level-region of A is the set of points
in R2 (R3) with at most k elements of A lying below it.
Let (≤ k)level− (A) denote the portion of the elements
of A in both D− and the (≤ k)-lower-level-region of
A.

Lemma 14 Let A be an arrangement of straight lines,
segments or rays. Then:

1. V+
k (O,A) = T [(≤ k)level+ (T [A])].

2. V−
k (O,A) = T [(≤ k)level− (T [A])].

Proof. We prove 1, the proof of 2 is similar.
Let p ∈ D+ be such that p ∈ D for some D ∈ A,

and let L be the line that contains p and O. Then
p ∈ L+, T [D] ∈ T [A] and T (p) ∈ T [D]. As T pre-
serves incidences, by Proposition 13 and Proposition 9,
the line segment between O and p crosses at most
k elements of A, if and only if, there are at most k
elements of T [A] laying above T (p). □

2.2 Proofs of results in R2

Theorem 15 (Everett et al. [10]) Let A be an ar-
rangement of n lines in the plane. Then (≤ k)level (A)
can be computed in O(n log n+ kn) time.

We use Theorem 15 in order to prove Theorem 2.

Proof. [Proof of Theorem 2] Without loss of general-
ity, we may assume that p is at the origin, otherwise p
and the elements of A can be translated. We also may
assume that the x-axis does not contain an element
of A or an intersection between two elements of A,
otherwise, the elements of A can be rotated.
By Proposition 7, T [A] is an arrangement of n

straight lines. Thus, as the k-crossing visibility of O
on A can be obtained from V+

k (O,A) and V−
k (O,A),

this proof follows from Lemma 14 and Theorem 15. □

Let A be an arrangement of straight lines, rays and
segments. The vertical decomposition (also known
as trapezoidal decomposition) of A is obtained by
erecting vertical segments upwards and downwards
from each vertex in A and extend them until they
meet another line or all the way to infinity.

Lemma 16 Let A be an arrangement of n straight
lines, rays and segments. Then (≤ k)level (A) can be
obtained from a vertical decomposition of A in O(kn)
time.

Proof. Suppose that the vertical decomposition of
A is known. Then for each vertex, extend a vertical
segment upwards until it reaches k + 1 elements of A
or its way to infinity; such vertex is in (≤ k)level (A)
if and only if the vertical segment reaches its way to
infinity. □

Proof. [Another proof of Theorem 1] As in the proof
of Theorem 2, we may assume that p is at the ori-
gin and the x-axis does not contain edges of P . By
Proposition 10, T [P ] is an arrangement of at most
2n line segments or rays. Thus, as the k-crossing visi-
bility of O on P can be obtained from V+

k (O,P ) and
V−
k (O,P ), by Lemma 14 and Lemma 16, it is enough

to obtain the vertical decomposition of T [P ]∩D+ and
T [P ] ∩ D− in linear time; we do this for T [P ] ∩ D+,
the other case is similar.
Let L : y + c = 0 be a horizontal line, high enough

that all the endpoints of T [P ] ∩ D+ are below L. Let
L′ = T [L] and note that L′ is a horizontal line with
equation cy + 1 = 0. Suppose that the points in P
above L′ are blue and the others are red. Let P ′ be the
polygon in D+ obtained from P by scaling vertically
its red part, keeping the endpoints on L′ fixed.

In [7] Chazelle prove that the vertical decomposition
of a polygon can be computed in linear time (see
also Amato et al. [3]). Thus, as P ′ is contained in
D+, by Proposition 10 T [P ′] is a polygon, and the
vertical decomposition of T [P ′] can be computed in
linear time. Note that a point T (q) in T [P ] ∩ D+ is
below L if and only if q is blue. Thus the vertical
decomposition of T [P ]∩D+ can be obtained from the
vertical decomposition of T [P ′] below L. □

Proof. [Proof of Proposition 3] In [2] Alon et al.
prove that the maximum combinatorial complexity
of the (≤ k)-level on arrangements of n straight lines
in the plane is θ(nk). Without loss of generality, sup-
pose that the arrangement A reaches this bound and
the (≤ k)-level of A is contained in D+. Thus, the
combinatorial complexity of (≤ k)level+ (A) is θ(nk)
and by Lemma 14 the combinatorial complexity of
V+
k (O, T [A]) is also θ(nk). □

3 Results in R3

Let D be the set of points (x, y, z) ∈ R3 such that
z ̸= 0. Throughout this section, O denotes the point
(0, 0, 0) ∈ R3 and T denotes the transformation T :
D → D be such that

T ((x, y, z)) = (x/z, y/z, 1/z) .

The proofs of Proposition 17, Proposition 18, Proposi-
tion 19, Proposition 20, Proposition 21 and Lemma 22,
can be obtained as in Section 2.

Proposition 17 T is self-inverse.
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Proposition 18 T sends planes to planes. More pre-
cisely, if π is the plane in D with equation ax+ by +
cz + d = 0 then T [π] is the plane in D with equation
ax+ by + dz + c = 0.

Proposition 19 T preserve incidences between
points and planes. More precisely the point p is in the
plane π if and only if T (p) is in the plane T [π].

Given a plane π in D, we denote by π+ the set of
points in π whose third coordinate is greater than zero,
and we denote by π− the set of points in π whose third
coordinate is less than zero.

Proposition 20 Let π be a plane in D. Then
T [π+] = T [π]

+
and T [π−] = T [π]

−
. Moreover, If

p1, p2, . . . , pk are in π+ (or they are in π−) ordered
by their distance to the plane z = 0 from the closest
to the furthest, then T (p1), T (p2), . . . , T (pk) are in
T [π+] (or they are in T [π−], respectively), ordered
by their distance to the plane z = 0 from the furthest
to the closest.

Given a D ⊂ D we denote by D the closure of D in
R3.

Proposition 21 Let L be a straight line in D. Then
O ∈ L if and only if T [L] is a vertical line.

Lemma 22 Let A be an arrangement of planes.
Then:

1. V+
k (O,A) = T [(≤ k)level+ (T [A])].

2. V−
k (O,A) = T [(≤ k)level− (T [A])].

The proofs of Theorem 4 and Proposition 5 follows
from Theorem 23 and Theorem 24, in a similar way
as in the proof of Theorem 2 and the proof of Propo-
sition 3 in Section 2.

Theorem 23 (Chan [6]) Let A be an arrangement
of n planes in R3. Then (≤ k)level (A) can be com-
puted in O(n log n+ k2n) expected time.

Theorem 24 (Clarkson et al. [8]) Let k ≥ 1.
Then the maximum combinatorial complexity of (≤ k)-
level on arrangements of n hyperplanes in Rd is
θ
(
n⌊d/2⌋k⌈d/2⌉

)
.
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small semispaces of a finite set of points in the
plane. Journal of Combinatorial Theory, Series
A, 41(1):154–157, 1986.

[3] Nancy M Amato, Michael T Goodrich, and
Edgar A Ramos. A randomized algorithm for
triangulating a simple polygon in linear time. Dis-
crete & Computational Geometry, 26(2):245–265,
2001.

[4] Yeganeh Bahoo, Prosenjit Bose, Stephane
Durocher, and Thomas Shermer. Computing the
k-crossing visibility region of a point in a poly-
gon. In Charles J. Colbourn, Roberto Grossi, and
Nadia Pisanti, editors, Combinatorial Algorithms,
pages 10–21, Cham, 2019. Springer International
Publishing.

[5] Antonio Bajuelos, Santiago Canales, Gregorio
Hernández, and Mafalda Martins. A hybrid meta-
heuristic strategy for covering with wireless de-
vices. J. Univers. Comput. Sci., 18(14):1906–1932,
2012.

[6] Timothy Chan. Random sampling, halfspace
range reporting, and construction of (≤ k)-levels
in three dimensions. SIAM Journal on Computing,
30(2):561–575, 2000.

[7] Bernard Chazelle. Triangulating a simple poly-
gon in linear time. Discrete & Computational
Geometry, 6(3):485–524, 1991.

[8] Kenneth Clarkson and Peter Shor. Applications
of random sampling in computational geometry,
ii. Discrete & Computational Geometry, 4(5):387–
421, 1989.

[9] James Dean, Andrzej Lingas, and Jörg-Rüdiger
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