On the Realizability of Planar and Spherical Occlusion Diagrams

Kimberly Kokado^{*1} and Csaba D. Tóth^{†1}

¹California State University Northridge, Los Angeles, CA, USA

Abstract

Spherical occlusion diagrams (SOD) were introduced as an axiomatic framework to analyze the visibility maps of points in the interior of a nonconvex polyhedron from which no vertex is visible. Planar occlusion diagrams (POD), corresponding to a viewpoint at infinity, can be defined analogously in terms of orthogonal projections of a lower envelope of polyhedra. We have recently constructed PODs and SODs that are not realizable as visibility maps. Here we show that every axis-aligned POD is realizable and follow up with open problems.

Introduction. The classical *art gallery problem* asks for the minimum number of point guards that can jointly see all points in a nonconvex polyhedron \mathcal{P} in Euclidean space, where points s and t see each other if the line segment st does not cross any face of \mathcal{P} . It is well known that guards stationed at the vertices of \mathcal{P} do not always suffice in \mathbb{R}^3 , as some points $s \in \mathbb{R}^3$ in the interior of a polyhedron \mathcal{P} may not see any of the vertices [4, Sec. 10.2]. Viglietta [7] recently introduced spherical occlusion diagrams (SOD, for short) to analvze the visibility map $V_{\mathcal{P}}(s)$ of such a point s with respect to \mathcal{P} . An SOD is defined so that it satisfies key properties of visibility maps. In particular, if no vertices of a polyhedron \mathcal{P} are visible from a viewpoint s, then the visibility map $V_{\mathcal{P}}(s)$ is an SOD. Viglietta conjectured that the converse also holds, that is, every SOD is the visibility map $V_{\mathcal{P}}(s)$ for some point s and polyhedron \mathcal{P} in \mathbb{R}^3 . We have recently disproved this conjecture, by constructing an SOD that is not realizable as a visibility map in \mathbb{R}^3 [3].

Related work. Our results show that SODs are not always visibility maps. Nevertheless, SODs have already been used in 3-dimensional visibility problems: Cano et al. [2] proved that every polyhedron \mathcal{P} in \mathbb{R}^3 can be guarded by at most $\frac{5}{6}$ of its edges; moreover, when \mathcal{P} is homeomorphic to a ball and all its faces are triangles, it can be guarded by at most $\frac{29}{36}$ of its edges. Toth et al. [6] proved that every point that does not see any vertex of a polyhedron \mathcal{P} must see at least 8 edges of \mathcal{P} , and this bound is tight. The realizability of visibility maps has been previously studied for lines. A weaving pattern is a simple arrangement of n lines in \mathbb{R}^2 together with a binary relation between intersecting lines; a weaving pattern is realizable if it is the orthogonal projection of an arrangement of disjoint lines in \mathbb{R}^3 such that the abovebelow relation between lines matches the given binary relation between their orthogonal projections. Pach et al. [5] showed that almost all weaving patterns of nlines are nonrealizable for sufficiently large n. Basu et al. [1] generalized the result to arrangements of semialgebraic curves.

Outlook. We have shown that spherical occlusion diagrams (SODs) are not equivalent to visibility maps in 3-space. Our result raises several open problems: Is there a simple (axiomatic) characterization of visibility maps? Can one decide efficiently whether a given SOD is a visibility map? If so, can one find a realization efficiently? What is the maximum (combinatorial, topological, or bit) complexity of the realization space for an SOD with n arcs for a given positive integer n?

References

- S. Basu, R. Dhandapani, and R. Pollack, On the realizable weaving patterns of polynomial curves in ℝ³. in *Proc. 12th Sympos. Graph Drawing (GD)*, volume 3383 of *LNCS*, Springer, 2004, pp. 36–42.
- [2] J. Cano, C. D. Tóth, J. Urrutia, and G. Viglietta, Edge guards for polyhedra in three-space, *Comput. Geom.* 104 (2022), article 101859.
- [3] K. Kokado and C. D. Tóth, Nonrealizable planar and spherical occlusion diagrams, in *Proc. Japanese Conf. Discrete & Comput. Geom. Graphs, and Games* (JCDCG³), Tokyo, 2022, pp. 60–61.
- [4] J. O'Rourke, Art Gallery Theorems and Algorithms, Oxford University Press, 1987.
- [5] J. Pach, R. Pollack, and E. Welzl, Weaving patterns of lines and line segments in space, *Algorithmica* 9(6) (1993), 561–571.
- [6] C. D. Tóth, J. Urrutia, and G. Viglietta, Minimizing visible edges in polyhedra, in Proc. 23rd Thailand-Japan Conf. Discrete & Comput. Geom. Graphs, and Games (TJCDCG³), Chiang Mai, 2021, pp. 70–71.
- [7] G. Viglietta, A theory of spherical diagrams, in Proc. 34th Canadian Conf. Comput. Geom. (CCCG), Toronto, ON, 2022, pp. 306-313.

^{*}Email: kimberly.kokado.43@my.csun.edu

[†]Email: csaba.toth@csun.edu