On the Realizability of Planar and Spherical Occlusion Diagrams

Kimberly Kokado*1 and Csaba D. Tóth ${ }^{\dagger 1}$
${ }^{1}$ California State University Northridge, Los Angeles, CA, USA

Abstract

Spherical occlusion diagrams (SOD) were introduced as an axiomatic framework to analyze the visibility maps of points in the interior of a nonconvex polyhedron from which no vertex is visible. Planar occlusion diagrams (POD), corresponding to a viewpoint at infinity, can be defined analogously in terms of orthogonal projections of a lower envelope of polyhedra. We have recently constructed PODs and SODs that are not realizable as visibility maps. Here we show that every axis-aligned POD is realizable and follow up with open problems.

Introduction. The classical art gallery problem asks for the minimum number of point guards that can jointly see all points in a nonconvex polyhedron \mathcal{P} in Euclidean space, where points s and t see each other if the line segment st does not cross any face of \mathcal{P}. It is well known that guards stationed at the vertices of \mathcal{P} do not always suffice in \mathbb{R}^{3}, as some points $s \in \mathbb{R}^{3}$ in the interior of a polyhedron \mathcal{P} may not see any of the vertices [4, Sec. 10.2]. Viglietta [7] recently introduced spherical occlusion diagrams (SOD, for short) to analyze the visibility map $V_{\mathcal{P}}(s)$ of such a point s with respect to \mathcal{P}. An SOD is defined so that it satisfies key properties of visibility maps. In particular, if no vertices of a polyhedron \mathcal{P} are visible from a viewpoint s, then the visibility map $V_{\mathcal{P}}(s)$ is an SOD. Viglietta conjectured that the converse also holds, that is, every SOD is the visibility map $V_{\mathcal{P}}(s)$ for some point s and polyhedron \mathcal{P} in \mathbb{R}^{3}. We have recently disproved this conjecture, by constructing an SOD that is not realizable as a visibility map in $\mathbb{R}^{3}[3]$.

Related work. Our results show that SODs are not always visibility maps. Nevertheless, SODs have already been used in 3 -dimensional visibility problems: Cano et al. [2] proved that every polyhedron \mathcal{P} in \mathbb{R}^{3} can be guarded by at most $\frac{5}{6}$ of its edges; moreover, when \mathcal{P} is homeomorphic to a ball and all its faces are triangles, it can be guarded by at most $\frac{29}{36}$ of its edges. Tóth et al. [6] proved that every point that does not see any vertex of a polyhedron \mathcal{P} must see at least 8 edges of \mathcal{P}, and this bound is tight.

[^0]The realizability of visibility maps has been previously studied for lines. A weaving pattern is a simple arrangement of n lines in \mathbb{R}^{2} together with a binary relation between intersecting lines; a weaving pattern is realizable if it is the orthogonal projection of an arrangement of disjoint lines in \mathbb{R}^{3} such that the abovebelow relation between lines matches the given binary relation between their orthogonal projections. Pach et al. [5] showed that almost all weaving patterns of n lines are nonrealizable for sufficiently large n. Basu et al. [1] generalized the result to arrangements of semialgebraic curves.
Outlook. We have shown that spherical occlusion diagrams (SODs) are not equivalent to visibility maps in 3-space. Our result raises several open problems: Is there a simple (axiomatic) characterization of visibility maps? Can one decide efficiently whether a given SOD is a visibility map? If so, can one find a realization efficiently? What is the maximum (combinatorial, topological, or bit) complexity of the realization space for an SOD with n arcs for a given positive integer n ?

References

[1] S. Basu, R. Dhandapani, and R. Pollack, On the realizable weaving patterns of polynomial curves in \mathbb{R}^{3}. in Proc. 12th Sympos. Graph Drawing (GD), volume 3383 of $L N C S$, Springer, 2004, pp. 36-42.
[2] J. Cano, C. D. Tóth, J. Urrutia, and G. Viglietta, Edge guards for polyhedra in three-space, Comput. Geom. 104 (2022), article 101859.
[3] K. Kokado and C. D. Tóth, Nonrealizable planar and spherical occlusion diagrams, in Proc. Japanese Conf. Discrete \& Comput. Geom. Graphs, and Games (JCDCG ${ }^{3}$), Tokyo, 2022, pp. 60-61.
[4] J. O'Rourke, Art Gallery Theorems and Algorithms, Oxford University Press, 1987.
[5] J. Pach, R. Pollack, and E. Welzl, Weaving patterns of lines and line segments in space, Algorithmica $\mathbf{9 (6)}$ (1993), 561-571.
[6] C. D. Tóth, J. Urrutia, and G. Viglietta, Minimizing visible edges in polyhedra, in Proc. 23rd ThailandJapan Conf. Discrete $\varepsilon \mathcal{S}$ Comput. Geom. Graphs, and Games (TJCDCG ${ }^{3}$), Chiang Mai, 2021, pp. 70-71.
[7] G. Viglietta, A theory of spherical diagrams, in Proc. 34th Canadian Conf. Comput. Geom. (CCCG), Toronto, ON, 2022, pp. 306-313.

[^0]: *Email: kimberly.kokado.43@my.csun.edu
 ${ }^{\dagger}$ Email: csaba.toth@csun.edu

