Computing the (α, k) -hull for points in convex position

Luis H. Herrera^{*1}, Pablo Pérez-Lantero^{†2}, and Carlos Seara^{‡3}

¹Dept. de Ingeniería Informática, Universidad Tecnológica Metropolitana (UTEM), Chile ²Dept. de Matemática y Ciencia de la Computación, Universidad de Santiago de Chile (USACH) ³Dept. de Matemàtiques, Universitat Politècnica de Catalunya (UPC), Spain

Abstract

We present an efficient $O(n \log n)$ -time and O(n)-space algorithm for computing the (α, k) -hull of a set P of n points in convex position in the plane.

1 Introduction

Let P be a set of $n \geq 3$ points in convex position in the plane, $\alpha \in (0, \pi]$ an angle, and $k \in \mathbb{N}$, $1 \leq k \leq \lfloor n/2 \rfloor$. The (α, k) -hull of the set P is the (possible empty) curvilinear region defined by the intersection of all α -halfplanes that contain at least n - k + 1 points of P, where an α -halfplane is the complement of an open wedge of aperture angle α . That is, the (α, k) -hull of P is the locus of the points u such that any wedge with apex u and aperture angle α contains at least k points of P. See Claverol et al. [1], where an $O(n^2 \log n)$ -time algorithm was presented for computing this hull.

The (α, k) -hull of a point set has tentative real applications. Namely, suppose that P represents a set of key points of a terrain, and we need to install a surveillance camera which has an angle of vision equal to α , rotates constantly, and at every moment should watch at least k of the key points. Hence, the (α, k) -hull of P is the locus of the possible locations in the terrain to install the rotating camera.

2 The algorithm

Each k + 1 consecutive vertices of conv(P) define an open disk D such that all points of $conv(P) \setminus D$ see these vertices with angle at least α . We have n disks in total, and it can be proved that $conv(P) \setminus \mathcal{D}$ is precisely the (α, k) -hull of P, where \mathcal{D} is the union of all disks D.

The contour of \mathcal{D} consists of O(n) circular arcs [2], and by using the algorithm of Imai et al. [2] based on a Voronoi diagram for disks, they can be computed in $O(n \log n)$ time. The interior contour of \mathcal{D} , bounding the holes of \mathcal{D} , defines the (connected components of) the (α, k) -hull of P. See Figure 1 for a couple of examples of the (α, k) -hull of P. Thus, we have the following result.

Theorem 1 Given $\alpha \in (0, \pi]$ and $1 \le k \le \lfloor n/2 \rfloor$, the (α, k) -hull of a set P of n points in convex position has O(n) complexity, and can be computed in efficient $O(n \log n)$ time and O(n) space.

Figure 1: (Top) The $(\pi/2, 2)$ -hull formed by a connected region. (Bottom) The $(\pi/2, 1)$ -hull formed by 5 connected regions.

References

- M. Claverol, L. H. Herrera, P. Pérez-Lantero, and C. Seara. On (α, k)-sets and (α, k)-hulls in the plane. XIX EGC, (2021), pp. 37–40.
- [2] H. Imai, M. Iri, and K. Murota. Voronoi diagram in the Laguerre geometry and its applications. *SIAM J. Comput.*, 14, (1985), pp. 93–105.

^{*}Email: luis.herrerab@utem.cl

[†]Email: pablo.perez.l@usach.cl.

[‡]Email: carlos.seara@upc.edu.