# Computing the ( $\alpha, k$ )-hull for points in convex position 

Luis H. Herrera* ${ }^{* 1}$, Pablo Pérez-Lantero ${ }^{\dagger 2}$, and Carlos Seara ${ }^{\ddagger 3}$<br>${ }^{1}$ Dept. de Ingeniería Informática, Universidad Tecnológica Metropolitana (UTEM), Chile<br>${ }^{2}$ Dept. de Matemática y Ciencia de la Computación, Universidad de Santiago de Chile (USACH)<br>${ }^{3}$ Dept. de Matemàtiques, Universitat Politècnica de Catalunya (UPC), Spain


#### Abstract

We present an efficient $O(n \log n)$-time and $O(n)$-space algorithm for computing the $(\alpha, k)$-hull of a set $P$ of $n$ points in convex position in the plane.


## 1 Introduction

Let $P$ be a set of $n \geq 3$ points in convex position in the plane, $\alpha \in(0, \pi]$ an angle, and $k \in \mathbb{N}, 1 \leq k \leq\lfloor n / 2\rfloor$. The ( $\alpha, k$ )-hull of the set $P$ is the (possible empty) curvilinear region defined by the intersection of all $\alpha$-halfplanes that contain at least $n-k+1$ points of $P$, where an $\alpha$-halfplane is the complement of an open wedge of aperture angle $\alpha$. That is, the $(\alpha, k)$-hull of $P$ is the locus of the points $u$ such that any wedge with apex $u$ and aperture angle $\alpha$ contains at least $k$ points of $P$. See Claverol et al. [1], where an $O\left(n^{2} \log n\right)$-time algorithm was presented for computing this hull.

The $(\alpha, k)$-hull of a point set has tentative real applications. Namely, suppose that $P$ represents a set of key points of a terrain, and we need to install a surveillance camera which has an angle of vision equal to $\alpha$, rotates constantly, and at every moment should watch at least $k$ of the key points. Hence, the $(\alpha, k)$-hull of $P$ is the locus of the possible locations in the terrain to install the rotating camera.

## 2 The algorithm

Each $k+1$ consecutive vertices of $\operatorname{conv}(P)$ define an open disk $D$ such that all points of $\operatorname{conv}(P) \backslash D$ see these vertices with angle at least $\alpha$. We have $n$ disks in total, and it can be proved that $\operatorname{conv}(P) \backslash \mathcal{D}$ is precisely the $(\alpha, k)$-hull of $P$, where $\mathcal{D}$ is the union of all disks $D$.

The contour of $\mathcal{D}$ consists of $O(n)$ circular arcs [2], and by using the algorithm of Imai et al. [2] based on a Voronoi diagram for disks, they can be computed in $O(n \log n)$ time. The interior contour of $\mathcal{D}$, bounding the holes of $\mathcal{D}$, defines the (connected components

[^0]of) the $(\alpha, k)$-hull of $P$. See Figure 1 for a couple of examples of the $(\alpha, k)$-hull of $P$. Thus, we have the following result.

Theorem 1 Given $\alpha \in(0, \pi\rfloor$ and $1 \leq k \leq\lfloor n / 2\rfloor$, the $(\alpha, k)$-hull of a set $P$ of $n$ points in convex position has $O(n)$ complexity, and can be computed in efficient $O(n \log n)$ time and $O(n)$ space.



Figure 1: (Top) The ( $\pi / 2,2$ )-hull formed by a connected region. (Bottom) The $(\pi / 2,1)$-hull formed by 5 connected regions.

## References

[1] M. Claverol, L. H. Herrera, P. Pérez-Lantero, and C. Seara. On $(\alpha, k)$-sets and ( $\alpha, k)$-hulls in the plane. XIX EGC, (2021), pp. 37-40.
[2] H. Imai, M. Iri, and K. Murota. Voronoi diagram in the Laguerre geometry and its applications. SIAM J. Comput., 14, (1985), pp. 93-105.


[^0]:    *Email: luis.herrerab@utem.cl
    $\dagger$ Email: pablo.perez.l@usach.cl.
    $\ddagger$ Email: carlos.seara@upc.edu.

