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Abstract

We study the structure of faces in Voronoi diagrams
of order k, Vk(S), of sets S of n points in the plane.
While the number of faces of Vk(S) is well known, not
so much is known about the numbers of quadrilaterals,
of pentagons, of hexagons in Vk(S). We present two
extremal point sets and calculate the number of faces
of each type in Vk(S). Among the obtained results, we
show that there exists a set S of n points, where all
bounded faces of Vk(S) are hexagons, for k ≥ (n+3)/2,
and where Vk(S) contains no quadrilateral for 3 ≤ k ≤
(n + 1)/4. Finally, we prove that for no point set S,
Vk(S) can have two adjacent quadrilaterals, for k ≥ 2,
and we present some experimental result.

1 Introduction

We present a study on higher order Voronoi diagrams,
that continues our previous work [3]. Voronoi
diagrams are a very useful tool in diverse disciplines,
see e.g. [1, 11]. Many of their properties were already
obtained by Lee [7]. For a given set S of n points
in general position in the plane, meaning that no
three points of S are collinear and no four points of S
are cocircular, the Voronoi diagram of order k of S,
Vk(S), is a subdivision of the plane into faces such
that points in the same face have the same k nearest
points of S. A face of Vk(S) is denoted by f(Pk)
where Pk is the subset of k points of S that is closest
to every point of this face. It is well known that Vk(S)

has (2k − 1)n − (k2 − 1) −
∑k−2

j=0 ej many faces, see
e.g. [7, 3]. Here, ej denotes the number of j-edges of
S. A j-edge is a half-plane defined by the oriented
line through a pair of points of S that contains j
points of S in its interior. The set Pk associated to
an unbounded face can be separated from S \ Pk by a
straight line, and the number of unbounded faces of
Vk+1(S) is ek.
Miles and Maillardet [9] proved that Vk(S) never
contains a triangle for k ≥ 2, also see [3, 8]. We are
interested in the number of quadrilateral faces, of
pentagonal faces, etc., of Vk(S). This question has
been studied extensively for k = 1 and for random
point sets, especially with respect to a homogeneous

Poisson point process, see e.g. [2, 4, 10, 6]. Several of
these results are experimental and are summarized
in [11]. In this setting, the expected number of sides
of a face of Vk(S) is 6 for every 1 ≤ k ≤ n − 2 [10].
In order to study how many faces with i sides, for
i = 4, 5, . . ., are there at least and at most in Vk(S)
among all sets S of n points, and to better understand
the structure of Vk(S), we present two special point
sets S, determine subsets Pk ⊂ S that define a face
f(Pk) of Vk(S) and count the number of i-sided faces.
For the first point set S, studied in Section 2, all
its points are placed very close to the coordinate
axes. Among the properties of Vk(S) for this set, we
point out that Vk(S) contains no quadrilateral for
3 ≤ k ≤ n+1

4 , and, for k ≥ n+3
2 , all the bounded faces

of Vk(S) are hexagons. The second considered point
set S consists of n points on the positive branch of the
parabola y = x2, i.e. on the two-dimensional moment
curve. We describe all faces of Vk(S) precisely.
Interestingly, for every 2 ≤ k ≤ n− 2, Vk(S) contains
exactly one quadrilateral, and for k ≥ 3, all hexagonal
faces are alternating (this is defined in the following).
A similiar study of counting the number of i-sided
faces in a special point set was carried out for Voronoi
diagrams of order 1 in [5], where the points are placed
on the Archimedean spiral.
The i-sided faces of Vk(S) can be classified even more
precisely: each vertex of a face f(Pk) is either the
circumcenter of two points from Pk and one point
from S\Pk, a type II vertex, or of one point from Pk

and two points from S\Pk, a type I vertex [3]. Such
vertices are also called inner and outer vertices [9], or
old and new vertices [7]. It is known that in Vk(S), for
2 ≤ k ≤ n− 2, every bounded face has vertices of type
I and of type II [7]. For k ≥ 2, every quadrilateral has
two vertices of each type, which appear in alternating
order. There exist two classes of pentagonal faces:
Class I are pentagons with three vertices of type I and
two vertices of type II, and Class II are pentagons
with three vertices of type II and two vertices of type
I. We say that a hexagonal face is alternating if its
vertices alternate between type I and type II. See [3]
for some structural results on alternating hexagons
in Vk(S). We then also study the number of faces
according to this classification for type I and type
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II vertices. We will need the edge labeling of Vk(S),
defined in [3]. An edge that delimits a face of Vk(S) is
a (possibly unbounded) segment of the perpendicular
bisector of two points i and j of S. This well-known
observation induces a natural labeling of the edges of
Vk(S) with the following rules:
Edge rule: An edge of Vk(S) from the perpendicular
bisector of points i, j ∈ S has labels i and j, where
label i is on the side (half-plane) of the edge that
contains point i and label j is on the other side.
Vertex rule: Let v be a vertex of Vk(S) and let
{i, j, ℓ} ∈ S be the set of labels of the edges incident
to v. The cyclic order of the labels of the edges
around v is i, i, j, j, ℓ, ℓ if v is of type I, and it is
i, j, ℓ, i, j, ℓ if v is of type II.
Face rule: In each face of Vk(S), the edges that have
the same label i are consecutive, and these labels i
are either all in the interior of the face, or are all in
the exterior of the face.

Using the edge labeling, we prove a structural result
that holds for every set of points S, namely that no two
quadrilaterals can share an edge in Vk(S), for k ≥ 2.
We also describe the labels of the edges of Vk(S) for
the point set on the parabola, studied in Section 3.
Proofs are omitted in this abstract.

2 Points close to the axes

Let S = H ∪ V where H are all the points of the form
Hi = (i, 0) with i ∈ Z,−n ≤ i ≤ n, n ≥ 1, and V are
all of the form Vj = (0, j) with j ∈ Z,−(n + m) ≤
j ≤ −n,m > 1, or n ≤ j ≤ n + m. Hn, H−n are
called extremes of H, and Vn, V−n, Vn+m, H−n−m are
extremes of V . We slightly perturb the points ofH and
V so that the points of S are in general position. The
structure of Voronoi diagrams stays the same when the
perturbation of the points is sufficiently small; values
of k where this perturbation can make a difference
are not considered. Note that |S| = |H| + |V | =
(2n+ 1) + 2m+ 2.

Lemma 1. Every circle C passing through the points
Hi and Hi′ , where i, i′ ∈ Z, encloses all points Hp,
with −n ≤ i < p < i′ ≤ n. If in addition C passes
through Vj, n ≤ j, then C encloses the points Vℓ such
that n ≤ ℓ < j. Analogously if j ≤ −n, then C
encloses the points Vℓ such that j < ℓ ≤ −n.

Lemma 2. Let C be a circle passing through Hi ∈ H,
Vj and Vj′ ∈ H, j, j′ ∈ Z, where n ≤ j < j′ or
j′ < j ≤ −n. Then, if i > 0, C encloses Hp with
i < p; if i < 0, C encloses Hp with p < i.

2.1 Quadrilaterals

Property 3. V1(S) has |H|+ |V | − 6 = 2(n+m)− 3
quadrilateral faces. Also, if the points of S are on the

coordinate axes, two edges of each quadrilateral are
tangent to the parabolas with focus Hn, H−n, Vn, V−n

and directrix an axis.

To illustrate Property 3, see Figure 1.

Figure 1: All bounded faces of V1(S) are quadrilaterals
except two of them which have |H|+ 2 sides.

Property 4. V2(S) has four quadrilateral faces:
f({Vn, Hn}), f({Vn, H−n}), f({V−n, Hn}) and
f({V−n, H−n}). Moreover, Vk(S) does not have
quadrilateral faces for 3 ≤ k ≤ |V |/2 and k ≥ |H|+ 2.

2.2 Pentagons

It is possible to find a collection of pentagons joined
two by two, sharing an edge. We find this configuration
in the Vk(S), where 2 ≤ k ≤ |V |/2 = m+ 1 (if m = n,
then 2 ≤ k ≤ (|S|+ 1)/4). See Figure 2.

Property 5. In each Vk(S), 2 ≤ k ≤ |V |/2, there
are two chains of pentagons. Further, if Pk is a set of
points associated to a pentagonal face of Vk(S), then
Pk has either a single point from V and an extreme
point of H, or a single point from H and an extreme
point of V , except in the case where k = 2, in which
the two points of P2 cannot be one of them extreme
of V and the other one extreme of H. The number
of pentagonal faces is 2(|V |+ |H|)− 12 in V2(S) and
2(|V |+ |H|)− 4 in Vk(S), for k ≥ 3.

2.3 Hexagons

Property 6. Let f(Pk) be a non-alternating hexago-
nal face of Vk(S). Then, Pk is either:

• A set of k consecutive points of H \ {H−n, Hn}
where 2 ≤ k ≤ |H| − 2.

• A set of k consecutive points of
V \ {V−n, Vn, V−(n+m), Vn+m} where
2 ≤ k ≤ |V |/2− 2.

• A set of k1 consecutive points of H that contains
either H−n or Hn, together with k2 consecutive
points of V \{V−(n+m), Vn+m} that contain either
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V−n or Vn, where k = k1 + k2 ≥ 4, 2 ≤ k1 <
|H| − 1, 2 ≤ k2 < (|V |/2)− 1.

Property 7. Let f(Pk) be an alternating hexagonal
face of Vk(S). Then Pk is either:

• A set of k1 contiguous points of H \ {H−n, Hn}
together with k2 = k − k1 contiguous points
of V \ {V−(n+m), Vn+m} that contain V−n or Vn

where k ≥ 3, 2 ≤ k1 < |H| − 2, k2 < (|V |/2)− 1.

• A set of k2 contiguous points of
V \ {V−n, Vn, V−(n+m), Vn+m} together with
k1 = k − k2 contiguous points of H that contain
H−n or Hn, where 2 ≤ k2 < |V |/2− 2, k1 < |H|.

Figure 2: Hexagonal and pentagonal faces in V4(S).

Property 8. The numbers of hexagons in Vk(S), for
2 ≤ k ≤ min{|H| − 2, |V |/2− 2} are:

k = 2 2n+ 2m− 6
k = 3 6n+ 6m− 21
k ≥ 4 (|S| − 3)(2k − 3)− 3k2 + 4k − 6

Property 9. If |V | ≤ |H| and |H|+ 2 ≤ k < |S| − 1,
then all bounded faces of Vk(S) are hexagons. More-
over, if the set Pk associated to the bounded face f(Pk)
of Vk(S) does not contains an extreme point of H, then
f(Pk) is an alternating hexagon.

3 Points on the positive branch of a parabola

Let S be the ordered set of points of the form Qi =
(xi, x

2
i ), where xi ∈ R, xi > 0, i ∈ N, 1 ≤ i ≤ n and

Qi < Qj if and only if i < j and xi < xj . We
count the bounded faces Vk(S), which can only be a
quadrilateral, pentagons and alternating hexagons.

Lemma 10. Every circle C passing through the points
Qi, Qj and Qℓ, with i < j < ℓ, encloses all points Qm

with m < i or j < m < ℓ.

3.1 Quadrilaterals

Property 11. Vk(S) with 2 ≤ k ≤ n − 2 has
a unique quadrilateral face f(Pk). The two labels

at the interior of f(Pk) are k − 1 and k + 1 with
Qk−1, Qk+1 ∈ Pk and the two labels at the exterior
of f(Pk) are k and k + 2 with Qk, Qk+2 /∈ Pk. Also,
Pk = {Q1, Q2, ..., Qk−2, Qk−1, Qk+1}.

3.2 Pentagons

There exists two classes of pentagonal faces with both
types of vertices: Class I are pentagons with three
vertices of type I and two vertices of type II and Class
II are pentagons with three vertices of type II and two
vertices of type I.

Property 12. Let f(Pk) be a class I pentagonal face
of Vk(S) with 2 ≤ k ≤ n − 2, and let i and j be the
two labels at the interior of f(Pk) with i < j and
Qi, Qj ∈ Pk. Then, i = k − 1, k + 2 ≤ j ≤ n − 1
and the three labels at the exterior of f(Pk) are k,
j − 1 and j + 1, with Qk, Qj−1, Qj+1 /∈ Pk. Also,
Pk = {Q1, Q2, ..., Qk−2, Qk−1, Qj}.

Property 13. Let f(Pk) be a class II pentagonal face
of Vk(S) with 3 ≤ k ≤ n − 3, and let i, j, ℓ be the
three labels at the interior of f(Pk) with i < j < ℓ
and Qi, Qj , Qℓ ∈ Pk. Then, 1 ≤ i ≤ k − 2, j = i+ 2,
ℓ = k + 1 and the three labels at the exterior of f(Pk)
are i+ 1 and k + 2, with Qi+1, Qk+2 /∈ Pk. Also, the
points Qm with m < i or i + 2 < m < k + 1 are the
remaining points of Pk.

Property 14. Vk(S) with 2 ≤ k ≤ n− 2, has exactly
(n− k − 2) class I pentagonal faces.

Property 15. Vk(S) with 3 ≤ k ≤ n− 3, has exactly
(k − 2) class II pentagonal faces.

3.3 Hexagons

Property 16. Let f(Pk) be an alternating hexagonal
face of Vk(S) with 3 ≤ k ≤ n − 3, and let i, j and
ℓ be the three labels at the interior of f(Pk) with i <
j < ℓ and Qi, Qj , Qℓ ∈ Pk. Then, 1 ≤ i ≤ k − 2,
i+ 2 ≤ j ≤ n − k + i, ℓ ≤ n − 1 and the three labels
at the exterior of f(Pk) are i + 1, j − 1 and ℓ + 1
with Qi+1, Qj−1, Qℓ+1 /∈ Pk. Also, the points Qm with
m < i or j < m < ℓ are the remaining points of Pk.

Property 17. Vk(S) with 3 ≤ k ≤ n− 3, has exactly
(k − 2)(n− k − 2) alternating hexagons.

4 Experimental and theoretical results

Previous properties have been additionally verified
computationally. For this, a generator algorithm
for the order-k Voronoi diagram was implemented
in Python, so n-sided bounded faces can be counted.
This code was used to seek for more general properties.
We generated 1000 sets of n uniformly distributed ran-
dom points on the unit square in general position for
each n from 4 to 20. We obtained all order-k Voronoi
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diagrams for these sets. Then, minimum, maximum
and mean of the n-sided bounded faces for all of the
same order Voronoi diagrams for the sets with the
same number of points were computed. We get tables
like the ones below shown for n = 10.

n = 10 Quadrilateral Pentagons Hexagons

k = 1
min= 0
max= 5
mean= 1.379

min= 0
max= 5
mean= 1.464

min= 0
max= 3
mean= 0.684

k = 2
min= 0
max= 6
mean= 3.077

min= 0
max= 12
mean= 4.177

min= 0
max= 10
mean= 2.988

k = 3
min= 0
max= 8
mean= 3.957

min= 0
max= 12
mean= 4.644

min= 0
max= 11
mean= 4.16

k = 4
min= 0
max= 9
mean= 4.092

min= 0
max= 11
mean= 4.719

min= 0
max= 13
mean= 4.342

k = 5
min= 0
max= 10
mean= 3.726

min= 0
max= 12
mean= 4.249

min= 0
max= 11
mean= 3.908

k = 6
min= 0
max= 7
mean= 3.007

min= 0
max= 10
mean= 3.432

min= 0
max= 9
mean= 3.017

k = 7
min= 0
max= 5
mean= 2.048

min= 0
max= 8
mean= 2.328

min= 0
max= 7
mean= 1.866

k = 8
min= 0
max= 3
mean= 0.978

min= 0
max= 5
mean= 1.190

min= 0
max= 3
mean= 0.615

n = 10
Class I
Pentagons

Class II
Pentagons

Alternating
Hexagons

k = 1
min= 0
max= 0
mean= 0

min= 0
max= 0
mean= 0

min= 0
max= 0
mean= 0

k = 2
min= 0
max= 12
mean= 4.177

min= 0
max= 0
mean= 0

min= 0
max= 0
mean= 0

k = 3
min= 0
max= 9
mean= 3.335

min= 0
max= 6
mean= 1.309

min= 0
max= 7
mean= 1.081

k = 4
min= 0
max= 7
mean= 2.678

min= 0
max= 7
mean= 2.678

min= 0
max= 8
mean= 1.304

k = 5
min= 0
max= 6
mean= 1.983

min= 0
max= 7
mean= 2.266

min= 0
max= 7
mean= 1.304

k = 6
min= 0
max= 5
mean= 1.241

min= 0
max= 7
mean= 2.190

min= 0
max= 7
mean= 1.216

k = 7
min= 0
max= 3
mean= 0.534

min= 0
max= 6
mean= 1.793

min= 0
max= 4
mean= 0.489

k = 8
min= 0
max= 0
mean= 0

min= 0
max= 5
mean= 1.190

min= 0
max= 0
mean= 0

Note that, since for k = n− 1 the Voronoi diagram
Vk(S) has no bounded faces, there is no row in the

tables for k = 9 as all the values are always 0.
With these tables we try to find general proper-

ties for the number of quadrilaterals, pentagons, and
hexagons in higher order Voronoi diagrams. We proved
the next results for the bounded faces of the Voronoi
diagrams of any set of points in general position.

Property 18. Only in Voronoi diagrams of order one,
it is possible to find two quadrilaterals sharing an edge.

Property 19. Vk(S) with k ≥ 2, cannot have a
bounded face with only two type II vertices and sharing
a type I vertex with two Class II pentagonal faces.
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