
XX Spanish Meeting on Computational Geometry, Santiago de Compostela, July 3-5, 2023

Coverage maps on domains with obstacles

Oriol Balló∗1, Narćıs Coll†2, and Marta Fort‡2

1Universitat de Girona
2Graphics and Imaging Laboratory, Universitat de Girona

Figure 1: Coverage map of eight facilities (left) and twenty facilities (right)

Abstract

The coverage map of a set of facilities represents, for
each point within a domain, whether at least one
facility covers it (see Figure 1). That is, we know
if at least one facility is at most at a given distance
(the facility coverage radius) through the free space of
each point of the domain. In this work, we propose
a parallel method that runs on the GPU to compute
coverage maps over domains given by binary images.
The input is a binary image, where each pixel is marked
depending on whether it is free space or not, the set
of facilities, and their coverage radius. The output
is an image where each pixel is marked as covered or
uncovered by the set of facilities.

We use a two-step iterative process that combines
a quasi-Euclidean distance [1] propagation along free
space and an exact Euclidean distance computation
(without propagation). We iteratively repeat these
steps until no updates occur. During the process, we
obtain the distance of each pixel to its nearest site and
the pixel-id of the last corner (of the current shortest
path) by using two CUDA-kernels executed on 2d-grids
and 2d-blocks and considering a thread per pixel.

The quasi-Euclidean distance propagation along free
space uses a GPU parallel Bellman-Ford algorithm.
The used graph (computed on the fly from the binary
image) has as vertices the free pixels, and connects a
free pixel with its, at most 8, neighboring free pixels.
At the beginning of the process, pixels containing sites
store a 0 as distance and its pixel-id as last-corner-id.
The rest store ∞ as distance and -1 as last-corner-
id (uncovered pixel). Throughout the process, in a

∗Email: u1962391@campus.udg.edu
†Email: narcis.coll@udg.edu
‡Email: marta.fort@udg.edu

similar way to the Euclidean distance transformation
algorithms [2], each pixel propagates towards itself the
paths that reach its free neighbors. If the length of
any of these paths is less than the current distance,
this distance and the last corner-id are updated ac-
cordingly.
An inner-block propagation followed by an inter-

block propagation expands the current paths through
free space according to the quasi-Euclidean distance.
A boolean variable and two synchronizing points (per
block) stop the inner-block propagation when no up-
dates occur within the block. The inter-block propa-
gation uses a global boolean to keep calling the kernel
while updates occur.

The second step computes the exact Euclidean
length of the obtained paths. The covered-pixel
threads retrieve the path reaching the pixel while deter-
mining its Euclidean length. They add the Euclidean
distance from the pixel to its last-corner-id to the dis-
tance of this last corner to the previous one, and so on,
until reaching the original site. This two-step iteration
leads to exact free-space coverage maps.

Funding

Research supported by grants PID2019-106426RB-
C31 and PDC2021-120997-C32 funded both by
MCIN/AEI/10.13039/501100011033 and the 2nd
one also by European Union NextGenerationEU/PRTR.

References

[1] Montanari, U. (1968). A Method for Obtaining Skele-
tons Using a Quasi-Euclidean Distance. Journal of
the ACM (JACM), 15, 600–624.

[2] Maurer, C. R., Qi, R., and Raghavan, V. (2003). A
linear time algorithm for computing exact Euclidean
distance transforms of binary images in arbitrary di-
mensions. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 25(2), 265–270.


