
XX Spanish Meeting on Computational Geometry, Santiago de Compostela, July 3-5, 2023

Minsum m watchmen’s routes in Stiegl polygons∗†

Alireza Bagheri‡1, Anna Brötzner§2, Faezeh Farivar¶3, Rahmat Ghasemi‖3, Fatemeh Keshavarz-Kohjerdi∗∗4,
Erik Krohn††5, Bengt J. Nilsson‡‡2, and Christiane Schmidt∆6

1Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
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1 Introduction

In the classical watchman route problem, we aim for
the shortest closed route R within a polygon P , such
that all points of P are visible to some point of R.

Carlsson et al. [1] introduced the m-watchmen
problem as a generalization of this problem: instead
of a single mobile guard, we are givenmmobile watch-
men (with or without a given starting point) and we
aim to find routes for all watchmen, such that all
points in P are visible from at least one route and
such that the sum of the watchman-route lengths is
minimized. Carlsson et al. showed that the problem
is NP-hard in simple polygons and provided a poly-
time algorithm in histograms. Nilsson andWood [2, 3]
gave an O(n2m) time and O(n2) storage algorithm for
spiral polygons without given starting points for the
m watchmen. Nilsson and Schuierer [4] also consid-
ered histograms, but altered the objective to mini-
mizing the length of the longest of the m watchmen
routes, for which they provided an O(n2 log n) algo-
rithm. Also, Mitchell and Wynters [5] considered
the minmax criterion. They gave an O(n4m) algo-
rithm for rectilinear vision in rectilinear monotone
polygons and showed that the problem is NP-hard
for m = 2 in general. Nilsson and Packer [6] gave an
approximation algorithm for two watchmen in sim-
ple polygons. Packer [7] presented heuristics for both
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the minmax and the minsum criterion in polygons
with and without holes. In this paper, we present an
O(n2 ·min{m,n}) time and O(n ·min{m,n}) storage
algorithm to compute the minsum set of m watchmen
routes given their starting points in a Stiegl polygon—
which we define in Section 2. Without starting points
the solution is trivially a single point.

2 Watchmen routes’ properties in Stiegl polygons

A staircase polygon P , as defined in [8], is called a
Stiegl polygon if the floor solely consists of one hori-
zontal and one vertical edge, which we call the base
and the wall of P , respectively. Moreover, we call the
vertex between the base and the wall the origin of P .
Let S be a set of m points in the interior of P

which we consider as starting positions for the watch-
men. We say that point p sees point q if the segment
[p, q] lies in P . In particular, it can partly be on the
boundary of P , hence, one can see along a boundary
edge of P . We denote the x-coordinate of a point p by
x(p), and the y-coordinate by y(p). We furthermore
denote the horizontal and the vertical segment that
goes through point p and lies inside P with h(p), and
v(p), respectively.

Definition 1 For two points p and q, if x(p) ≥ x(q)
and y(p) ≤ y(q), we say that p dominates q.

Observe that, if p dominates q its visibility polygon
is a superset of the visibility polygon of q and that
any watchman can be limited to walk to the right
and downwards from its starting point, because the
bottom-rightmost position on its route w dominates
all other positions on w. Hence:

Lemma 2 A watchman route having starting point
s and rightmost x-coordinate x, and lowest y-
coordinate y can be replaced by the segment [s, (x, y)]
without increasing the minmax or minsum value of
the solution.
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Because all watchmen routes are a segment that the
watchman walks back and forth, for the rest of this
paper, we only compute that length of the segment
and the routes have twice the length we compute.

Lemma 3 If s and s′ are starting points such that
s dominates s′, and w,w′ are two watchmen routes
starting at s and s′, respectively, then w′ will have
zero length in an optimal minsum solution.

Proof. Everything s′ sees is seen by s. If a point p is
unseen both from s and s′, but the watchman starting
at s′ sees it, then the watchman has to cross either
the horizontal or vertical line through s. W.l.o.g., the
horizontal one, h(s). But then the distance from s to
a point that sees p is shorter than that from s′. □

Hence, let S be the set of non-dominated starting
points. S admits a total order, so let the points be
sorted from bottom-left to top-right: s1 < · · · < sm.
Define the x-overlap of two watchmen w and w′ as
the intersection between the projection of w and w′

onto the base. Similarly, define the y-overlap as the
intersection of the projections onto the wall.

Lemma 4 Let W be a set of optimal watchmen
routes and let w,w′ ∈ W be two watchmen routes
with starting points s and s′, respectively. If neither
w nor w′ has length zero, then w and w′ have no x-
and no y-overlap.

Proof. Assume w.l.o.g. s < s′ and that the x-overlap
of w and w′ is non-empty. Let w and w′ be dis-
joint (otherwise, we can shorten the routes). Let
p be w’s endpoint, and p′ be (w′)’s endpoint. Ob-
serve that x(p) < x(p′) as otherwise p would dom-
inate the route w′. Let the overlap be the interval
[x1, x2], then x(s′) = x1. We can shorten w: Sub-
stitute w by [s, (x(s′), y(p))]. The vertical segment
[s′, (x(s′), y(p))] is fully contained in P . Hence, no
convex corner that w saw before is unseen by the
new w and w′. By symmetry, it also holds for the
y-overlap. □

Let P be a Stiegl polygon, and let C be the convex
corners on the ceiling. Enumerate the corners in C
from bottom-left to top-right by c1, . . . , cñ, where ñ =
n−2
2 . For a convex corner ck let hk = h(ck) be the

extension of the horizontal edge at ck, and vk = v(ck)
the extension of the vertical edge at ck.

Lemma 5 Let W be a set of optimal watchmen
routes. Then, for every convex corner ck that is not
seen from S, either extension hk or vk is visited, no
such extension is visited twice, and every watchman
stops at an extension.

Proof. First, we show that every watchman stops
at an extension. Assume w.l.o.g. that watchman w
crosses extension vk in v×k , and that this is the last
extension on its route. Let q be the last point on its
route. When walking along segment [v×k , q], w will not
see any yet unseen convex corner that he did not see at
v×k . Hence, w can be replaced by [s, v×k ], contradicting
the assumption that it was optimal. Next, we argue
that for each ck that is not seen from S, either hk or vk
is visited. Assume w.l.o.g. that watchman w visits vk
and stops there. Then, he can see all of the rectangle
between ck and the origin, but he will not see ck+1.
Let ck+1 be guarded by watchman w′. If w′ moves to
extension hk, he will not see anything that w does not
see yet. In order to see some convex corner cj , j < k,
that is not seen from w, w′ has to walk downwards
to a point below v×k , but then w and w′ have non-
empty y-overlap, contradicting Lemma 4. Finally, no
extension is visited twice since this would mean that
two watchmen have nonempty x- or y-overlap, again
contradicting Lemma 4. □

LetW be a set of watchmen that guard P optimally.
Then the watchmen can be separated into solutions
of subpolygons with bottom and right edges given by
the extensions that are visited by the watchmen, and
where the subpolygons are separated by crates, which
are solely guarded by the starting points inside, and
the watchmen outside, but no watchman moves in-
side these crates. A crate is a Stiegl polygon with
precisely two convex corners on the ceiling that are
not seen by the set of starting points in the crate.
Specifically we define a crate by (a) two unseen con-
vex corners ci and cj where every ck, i < k < j, is
seen, where we cut along the extensions vi, hj , or (b)
one unseen convex vertex cj and a starting point s
where we cut along v(s) and hj , or vj and h(s) de-
pending on the position of s, and s is considered to
be outside the crate. In case there are two starting
points s, s′ with x(ci) < x(s) < x(s′) < x(ci+1), we
only consider the crate cut at v(s), but not the crate
cut at v(s′). Similarly, for two starting points s, s′

with y(cj−1) < y(s) < y(s′) < y(cj), we only consider
the crate cut at h(s′). We say such a crate starts at
i and ends at j. (We do not define a crate if both
cuts pass starting points as then the cuts are auto-
matically visited.) The two unseen convex corners on
the crate’s ceiling are precisely those incident to these
cuts. See Figure 1 for the different types of crates.

3 A dynamic programming algorithm

We describe an algorithm, which iteratively splits
the polygon into two independent subpolygons, called
sub-Stiegl polygons, that are separated by a crate
and which computes the minimum length watchmen
routes in each of them recursively. In each recursion,
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Figure 1: The two different types of crates.

it is ensured that the neighboring crates are seen by
forcing watchmen to walk to the base and the wall of
the sub-Stiegl polygon.

3.1 Idea

After cutting out a crate, we are left with two sub-
Stiegl polygons, which need to be guarded. For the
lower sub-Stiegl polygon, we consider the minimum
length of a watchman route guarding it immediately,
and all possible crates that split the subpolygon. The
upper one will be guarded immediately.

Since it is not necessary to walk to the bottom and
the right boundary of the initial polygon P , some pre-
processing is necessary. We do this by cutting off a
horizontal strip along the lower boundary of P , and a
vertical strip along the right boundary of P such that
the interior of the strip is seen by a watchman that
visits the extension along which we cut.

For defining the horizontal strip, consider the first
convex corner c1. If no starting point lies below h1,
this is an extension which needs to be visited in order
to see c1. Therefore we cut off the horizontal strip
below h1. If there is a starting point s below h1, we
consider h(s) as the first extension, and cut off the
horizontal strip below. Note that it does not mat-
ter whether we cut off the strip below the lowermost
starting point or any other starting point as long as we
do not cut off an unseen convex corner on the ceiling,
because the extension will be visited from the starting
point we choose with a watchman of length 0, and the
shortest watchman route to a vertical extension will
never start at any of the lower starting points as they
also lie further to the left. Analogously, we cut off a
vertical strip at the wall of P .

3.2 Sub-Stiegl polygons

In each iteration, the algorithm considers a sub-
polygon of P and computes the optimal solution
within that.

Let Pi,j be the Stiegl polygon that evolves when
cutting off a crate along hi, or along h(s) for any s ∈ S
satisfying y(ci−1) < y(s) ≤ y(ci), and vj , or v(s

′) for
any s′ ∈ S satisfying x(cj) < x(s′) ≤ x(cj+1). This

ci

cj

hi

vj

Pi,j

pi,j

s+i

s−jci+2

cj−1

Figure 2: The sub-Stiegl polygon Pi,j

definition is unique up to the choice of the starting
point that defines the cut. Here, we simply choose the
leftmost possible starting point for vertical cuts, and
the uppermost possible starting point for horizontal
cuts in order to remove a maximal crate. This will not
change the solution in Pi,j because among all possible
starting points s satisfying y(ci−1) < y(s) ≤ y(ci),
the uppermost one has the shortest direct path to the
wall of Pi,j among all starting points below hi, and
the same holds for any possible vertical cut.

Let pi,j be the origin of Pi,j , let Si,j be the subset
of starting points in S that lie in Pi,j (possibly on
the boundary) and let s+i < · · · < s−j be the points
in Si,j . Let furthermore Ci,j be the subset of C that
lies in Pi,j and is not yet seen. See Figure 2 for an
illustration. The goal is to visit both the floor and the
wall of Pi,j with watchmen routes that start at Si,j ,
such that all corners in Ci,j are seen.

Let L(i) be the length of the minimum watch-
men routes in the subpolygon P1,i, starting at the
points S1,i.

Lemma 6 If every convex corner in a sub-Stiegl
polygon Pi,j is already seen by Si,j , then the opti-
mal watchmen routes inside Pi,j consists either of one
watchman starting at s ∈ Si,j who directly moves to
pi,j , or s+i who moves vertically down to hi and s−j
who moves horizontally right to vj .

Proof. As all convex corners are already seen, there
is no extension inside Pi,j that needs to be visited by
a watchman. Hence, any watchman will directly walk
to hi or vj and stop there. Moreover, if a watchman
walks towards only one of the extensions, but does
not visit the other one, its shortest route will be the
orthogonal onto the extension. For any such watch-
man route starting neither at s+i nor at s−j , its route

can be replaced by the parallel route starting at s+i
or s−j , respectively. □

We define the uninorm of a polygon Pi,j , denoted
∥Pi,j∥u, as the length of the shortest possible watch-
men routes from which Pi,j is guarded, using starting
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Figure 3: Different solutions for sub-Stiegl poly-
gon Pi,j , depending on the starting points Si,j (red
points). The floor and the right wall (blue dashed
lines) need to be visited and all unseen convex cor-
ners Ci,j (green) need to be guarded.

points in Si,j , and that visit both the base and the
wall of Pi,j , and such that the solution is not split
into a set of independent solutions. The value of the
uninorm depends on the unseen convex corners and
the starting points in Si,j (the precise dependency is
given by the (∗)-condition that we define in the last
paragraph of this section),

∥Pi,j∥u =



min
s∈Si,j

∥s, pi,j∥ if Ci,j ̸= ∅, |Si,j | ≥ 1or ¬(∗)

min

{
∥s+i , hi∥+ ∥s−j , vj∥, min

s∈Si,j

∥s, pi,j∥
}

if |Si,j | ≥ 1 or (∗)
∞ if Ci,j ̸= ∅, Si,j = ∅ or Pi,j degenerates.

In case Si,j = ∅ while Ci,j ̸= ∅, then Pi,j cannot
be guarded from its interior. Hence, ∥Pi,j∥u is defined
to be ∞. See Figure 3f. If Pi,j is a degenerate crate
with no area, then again ∥Pi,j∥u = ∞.

If every unseen convex corner c ∈ Ci,j satisfies
y(c) < y(s+i ) or x(c) > x(s−j ) then we say that
Pi,j satisfies the (∗)-condition. If Pi,j satisfies (∗), a
watchman starting at s+i who moves vertically down
to hi and a second watchman starting at s−j who
moves horizontally right to vj is a candidate solution
(see Figure 3c–3e). The other candidate solutions are
given by a single watchman moving from a starting
point in Si,j to the origin pi,j (see Figure 3a–3b). The
uninorm is then the minimum over all candidate so-
lutions.

3.3 The algorithm

The total length of the minimum watchmen routes is
computed by the recursion

L(j) =min


∥P1,j∥u or

min
1<i<j−1
i unseen or

∃s:x(ci−1)<x(s)<x(ci)

{
L(i) + min

i<k<j
i,k define a crate

∥Pk,j∥u
}
,

where the current Stiegl polygon is either guarded im-
mediately, using watchmen routes of length ∥P1,j∥u,
or split into two sub-Stiegl polygons where the up-
per one, Pk,j , is guarded immediately. We pre-
compute the uninorm of all sub-Stiegl polygons in
O(n(n+m) log2 m) time (per subpolygon Pi,j , query
the closest point to the origin in O(log2 m) time us-
ing a dynamic closest point data structure [9]). To fill
out the lookup-table position L(j), the dynamic pro-
gramming algorithm considers all values L(i), i < j,
and corresponding values ∥Pk,j∥u with index k > i,
where i and k define a crate, and computes their sum.
There are less than j values for the start of the crate
i, and at most j − i ends of the crate that need to
be verified since for every convex corner, we only con-
sider the maximum possible crate. As every lookup
takes constant time, we can compute each entry in
O(n · min{m,n}) time. Hence, the algorithm takes
O(n2 ·min{m,n}) time and O(n ·min{m,n}) storage.
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