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Measuring cocircularity in a point set
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Abstract

In a given set S of n points in the plane, how close are
four points of S to be cocircular? We define several
measures to study this question, and present bounds
on this almost-cocircularity in a point set. Algorithms
for cocircularity are presented as well.

1 Introduction

A set S of points in the plane is in general position if
no three points of S are collinear and no four points
are cocircular. Most algorithms in Computational
Geometry require the input points to be in general
position. This simplifies the design of the algorithms
as most degenerate situations arise from collinearity,
but also from cocircularity. It is well known that any
sufficiently large set of points contains three points
that are almost collinear. In particular, a result by
Erdős and Sekeres [1] states that for every set S of 2n

points in the plane, the largest angle defined by points
of S is bounded from below by π · (1− 1/n).

We study how close are four points from S to being
cocircular. We define several measures of cocircularity
in point sets and give bounds on these measures.

On the algorithmic side, the minimum area triangle
defined by points of a given set S, which can be consid-
ered a measure of collinearity, can be found in O(n2)
time using duality [3, 4]. Our goal is to design algo-
rithms to find the tuple of four points of S closest
to cocircularity. We present several O(n3)-time algo-
rithms for this problem. A related, and well studied,
algorithmic problem to our research is computing the
annulus of smallest width that contains S, see e.g. [5]
and references therein.
In Section 2 we define three measures for cocircularity,
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Figure 1: Angles used in Thales cocircularity.

the Thales cocircularity, the Voronoi cocircularity, and
the Determinant cocircularity. We present properties
and differences among them. In Section 3 we show
bounds on the Thales cocircularity, and Section 4 is
mainly devoted to the design of algorithms.

2 Measures of cocircularity

Definition 1 The Thales cocircularity of four points
A,B,C,D is T (A,B,C,D) = minP {min{|α−β|, |α−
(π − β)|}}, where α = ∠ACB and β = ∠ADB, and
the minimum minP is taken over all permutations P
of the four points A,B,C,D. See Figure 1.

The Thales cocircularity is motivated by Thales’
theorem, also known as the inscribed angle theorem.
T (A,B,C,D) is invariant under translation and scal-
ing.

Definition 2 The Determinant cocircularity
D(A,B,C,D) of four points A = (Ax, Ay),
B = (Bx, By), C = (Cx, Cy), D = (Dx, Dy) is
the absolute value of the determinant:∣∣∣∣∣∣∣∣
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Figure 2: Top: V1(S) of a set of four almost cocircular
points S = {A,B,C,D}. Bottom-left: V2(S), where
for each unbounded cell the closest pair of points of
S is indicated, and the bounded cell has AC as the
closest pair of points. Bottom-right: V3(S), where in
each cell the closest triplet of points of S is indicated.
Centers of circles are depicted as red or blue squares.

The Determinant cocircularity is a very common
tool to check if four points are cocircular: four points
A,B,C,D in the plane lie on a common circle if and
only if D(A,B,C,D) = 0. More general, a determi-
nant test is often used to check if d+ 1 points in Rd

are in general position, since the volume the simplex
defined by d + 1 points is given by a determinant.
D(A,B,C,D) is invariant under translation, but un-
der a scaling by a factor c, the determinant varies in a
factor of c4. We therefore only consider the Determi-
nant cocircularity in Section 4 on algorithms to show
a relation to the 4-SUM problem.

We now introduce another measure of cocircularity.
The order-k Voronoi diagram of a point set S, denoted
by Vk(S), is a partition of the plane into cells that
have the same k closest points of S. The order-1
Voronoi diagram of four cocircular points is composed
of one vertex of degree four and four rays from it, the
vertex being the center of the circle. If we perturb
the points slightly so that the cocircularity disappears,
the Voronoi diagram changes: the vertex of degree
four gets replaced by two vertices of degree three,
connected by a short segment (there are two rays from
each of them). Each vertex is the center of a circle
through three of the four points considered, with none
of them in the interior. See Figure 2, top. Note that
there can be shorter segments in V2(A,B,C,D) or in
V3(A,B,C,D), see Figure 2, bottom.

Definition 3 The Voronoi cocircularity of four points
A,B,C,D, denoted by V(A,B,C,D), is the length of
the shortest edge in all Vk(A,B,C,D) for k = 1, 2, 3.
V(A,B,C,D) is zero if some Vk(A,B,C,D) has a ver-

Figure 3: Green (resp., red) circles pass through the
four most cocircular points of a set S of n = 10 points
according to Voronoi (resp., Thales) measure.

tex of degree four.

V(A,B,C,D) is invariant under translation. Also,
under scaling by a factor c, the length of the shortest
Voronoi edge scales linearly with c.

Definition 4 The Thales/Determinant/Voronoi co-
circularity of a set S of points is the minimum of the
Thales/Determinant/Voronoi cocircularity among all
4-tuples of points of S.

2.1 Properties and differences

All the measures described in the previous section are
zero when the points are cocircular.
We next give a formula for the length of an edge

in a Voronoi diagram of S. Each endpoint of such an
edge is the center of a circle passing through three
points of S, and where two of these three points are
the same for both circles.

Proposition 5 Let A,B,C,D be four points in the
plane, and let CA, CB be the centers of the circles
through C,A,D and C,B,D, respectively. If CA and
CB are on the same side of the line CD, then

|CACB | =
|CD|
2

(
∣∣|cotβ| − |cotα|∣∣),

where α and β are the angles ∠CAD and ∠CBD,
respectively. Otherwise,

|CACB | =
|CD|
2

(|cotβ|+ |cotα|).

We show in Figure 3 that the measures of Voronoi
and Thales cocircularity of a point set are different, in
the sense that they do not yield the same four-tuple
of points minimizing the cocircularity measure.

3 Bounds on cocircularity

We present two bounds on the measure of Thales
cocircularity.
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Algorithm 1 Detecting cocircularities with inversions

for every point pi ∈ S do
• Invert all points of S\{pi} with respect to the

center pi and radius r = 1.
• Execute as subroutine the sweep-line algorithm

to detect collinearities, see [3].
end for

Proposition 6 For any set S of n points and any
two points A,B ∈ S there exist C,D ∈ S such that
T (A,B,C,D) ≤ π/(n− 3).

Theorem 7 For any set S of n points in con-
vex position, there exist A,B,C,D ∈ S such that
T (A,B,C,D) ∈ O

(
1
n2

)
.

4 Algorithms

Another line of research is to detect these cocirculari-
ties. The decision problem is: Are there four cocircular
points in S? The optimization problem is: Find the
4-tuple of points of S that minimizes the measure.

4.1 Inversions

Proposition 8 There is an O(n3)-time algorithm
that decides whether there exist four cocircular points
in a set of n points, using inversions.

An inversion transformation is determined by two pa-
rameters: The center O and the radius R of inversion.
Two points P, P ′ are inverses if they lie in the same
half-line with origin at O and the Euclidean distances
|OP | and |OP ′| satisfy |OP | · |OP ′| = R2. We need
the following property of inversions:

Property 9 Given a center O and a radius R of in-
version, any circle containing O is inverted into a line.

Thus, if we perform an inversion at a point A that is
cocircular with points B,C,D, then inverting B,C,D
results in three points being collinear. Property 9
allows us to propose Algorithm 1. The cost of the
subroutine is O(n2), and it is executed in a loop with
O(n) iterations. Thus, the total cost is O(n3) time
and O(n) space.
We note that inversions do not preserve a rela-

tionship between the measures of cocircularity and
collinearity. Then, by using inversions, we can only
solve the decision problem of detecting cocircularities.

4.2 Higher order Voronoi diagrams

Proposition 10 The Voronoi cocircularity of a set
S of n points in general position in the plane can be
computed in O(n3) time.

To compute the Voronoi cocircularity of S is equiva-
lent to finding the shortest edge among the diagrams
Vk(S), for k = 1, . . . , n−1. All diagrams Vk(S) can be
obtained in time O(n3) [4, 6], and the number of edges
of a diagram Vk(S) is at most O(k(n−k)). Hence, the
computation can be done in O(n3) time.

4.3 Reduction from 4-SUM

The k-SUM problem asks if a list of n integers contains
k integers whose sum is zero. This is a prominent
problem for k = 3 since there is a large list of problems,
called 3SUM-hard, that have been proved to be as
difficult as 3-SUM; among them, the problem to decide
if three points of a given set are collinear [2].
There are easy quadratic-time algorithms to solve

both the 3-SUM and the 4-SUM problem in the integer
RAM model. As the quadratic-time algorithm for the
4-SUM problem uses hashing, under the real RAM
model there is a similar algorithm without hashing of
complexity O(n2 log n). We prove the following result,
which has as a consequence that the problem to decide
whether four points are cocircular is 4SUM-hard.

Proposition 11 Let [x1, x2, . . . , xn] be a list of n in-
tegers, and let S be the set of n points on the parabola
y = x2, with coordinates (xi, x

2
i ). Then, S contains

four cocircular points if and only if the sum of the
x-coordinates of these four points is zero.

4.4 Cost of the exact problem

We show that to decide whether there exist four co-
circular points in a set of n points can be done in
O(n3 log n) time in the worst case or, using hashing,
in expected O(n3) time1. Both algorithms can find a
solution, thus solving the optimization problem, and
work by storing the radius and center of the circle
defined by each triplet of points, and then detecting
collisions —in the first case, by sorting the circles,
which contributes with the additional factor of log n.

Proposition 12 There is an algorithm working in
expected O(n3) time that decides whether there exist
four cocircular points in a set of n points.

Proof. Suppose S is a set of n points. Our algorithm
uses hashing with separate chaining. In particular, H
represents a hash table of point sets indexed by triples
of points. Let f be the function that, given a set T of
three points, returns the triple (x, y, r) s.t. (x, y) and
r are the center and radius, resp., of the circle defined
by the points in T . We will use the operations:

• Insertion: H.insert(T ) adds information T with
key f(T ) to H.

1The use of hashing was also proposed in
https://cs.stackexchange.com/questions/49316/

largest-set-of-cocircular-points

https://cs.stackexchange.com/questions/49316/largest-set-of-cocircular-points
https://cs.stackexchange.com/questions/49316/largest-set-of-cocircular-points


XX Spanish Meeting on Computational Geometry, Santiago de Compostela, July 3-5, 2023

Algorithm 2 Exact cocircularity with hashing

given a set S of n points
let H be a hash table of size n3

initialise H with all entries containing ∅
for every distinct T ⊆ S with |T | = 3 do

if H[T ] = ∅ then
H[T ]← T

else
return H[T ] ∪ T

end if
end for
return “no cocircular points”

• Search: H.search(T ) returns ∅ if H does not
contain information for key f(T ) or a set R s.t.
f(T ) = f(R), otherwise.

The method is shown in Algorithm 2. Since insertion
and search have constant average cost, the for loop
and the initialization of H give an O(n3) expected cost
for the whole algorithm. □

Proposition 13 There is an O(n3 log n)-time algo-
rithm that decides whether there exist four cocircular
points in a set of n points.

Proof. In Algorithm 3, the hash table of Algorithm 2
has been substituted by a vector V of size n containing
4-tuples (x, y, r, T ), where n is the number of points;
here T represents a set of three points and (x, y) and
r are the center and radius resp. of the circle defined
by the points in T . We use a stable sorting algorithm
(like mergesort) and apply it to V with respect to the
first, second, and finally third component of the vector.
Since the sorting algorithm is stable, after the three
iterations the entries corresponding to the same circle
are contiguous in V and can be detected in linear
time. The cost of the first and third for loops is O(n3),
while the second for loop has a cost O(n3 log n3) =
O(n3 log n), which is also the cost of Algorithm 3 in
the worst case. □

5 Conclusions

We initiated the study of almost cocircularity in point
sets. We chose measures of cocircularity that we con-
sidered to be very natural, though other measures
could be studied as well. Several questions remain
open, and we plan to continue this line of research.

Open problem 14 Can the decision problem of de-
tecting cocircularities be solved in sub-cubic time?

Open problem 15 Can the bound for the Thales
measure for convex point sets be extended to arbitrary
point sets in general position?

Algorithm 3 Exact cocircularity

given a set S of n points
let V be a size n3 vector of tuples (x, y, r, T )
for reals x, y, r and a three point set T

i← 1
for every distinct T ⊆ S with |T | = 3 do

let (x, y) and r be the center and radius, resp.,
of the circle defined by the points in T

V [i]← (x, y, r, T )
i← i+ 1

end for
for i ∈ {1, 2, 3} do

sort V with respect to component i
end for
for i = 1 to n3 − 1 do

if V [i][j] = V [i+1][j] for each j ∈ {1, 2, 3} then
return V [i][4] ∪ V [i+ 1][4]

end if
end for
return “no cocircular points”

Open problem 16 Find families of point sets that
are “far away” from having four cocircular points.
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