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Abstract

Covering a set of segments in a plane with vehicles
of limited autonomy is a problem of practical inter-
est. The limited battery endurance imposes periodical
visits to a static base station. Typically, two optimiza-
tion problems are considered: minimize the number of
tours, and minimize the total traveled distance. In a
general setting, the problems are NP-hard and in this
letter, we study the one-dimensional version. For cov-
ering segments on a line, we design efficient solutions
for both optimization problems. First, we design a
Greedy algorithm that is optimal for the first task, and
for both tasks when only one segment is considered.
Being n and m the number of segments and tours of
an optimal solution, respectively, our algorithm runs
in O(m+ n) time. For the second criterion, our solu-
tion is based on Dynamic Programming and runs in
O(n2) +O(nm) time.

1 Introduction

Trajectory optimization through linear segments is of
practical interest in the robotics community. Road
network patrolling, anomaly detection in solar power
plants, power lines inspection and other similar in-
frastructures with unmanned vehicles are studied in
various pieces of research [2, 1, 6]. In this work, we
will use the term drone, though this research may be
applied to any agent with limited autonomy. The use
of drones or Unmanned Aerial Vehicles (UAVs), com-
monly called drones, has been proposed for the efficient
maintenance of infrastructures, in order to reduce po-
tential risks and costs for the distribution companies
[7, 3]. The battery life limit of these small-size robots
severely restricts the duration of the mission, as it
becomes impossible to complete the overall coverage
with a single tour. Therefore, considering each tour
should start and end at a base station, the problem
of minimizing the total cost of travel is hard in gen-
eral and some heuristics have been considered in the
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literature [4, 5].
Two optimization problems can be formulated when

the objects to be covered are line segments. Given a set
of line segments S with any distribution in the plane,
a depot or a base location O from where the robots
can be launched and recharged and, a real number L,
we consider:

• MinTours-problem: Finding the minimum num-
ber of tours t1, · · · , tp covering S, that is,

S ⊂
p⋃

i=1

ti.

• MinDistance-problem: Compute a set of tours
that covers S with minimum total length.

A tour t is considered to be valid if it starts and
ends at O, and the length of t is at most L. The length
of a tour is the sum of the Euclidean distance between
its consecutive vertices; the length of a set of tours is
the sum of the lengths of each of its elements. The NP-
hardness of MinTours- and MinDistance-problems
in the plane can be proved by a reduction from the
Traveling Salesman Problem (TSP). However, in this
paper we show that the one-dimensional case related
to both problems, where segments are located through
a line, can be solved in polynomial time. We consider
several scenarios, designing efficient algorithms capable
of finding the optimal solution. The paper is structured
as follows: Section 2 formally defines the considered
problems; Section 3 describes the optimal solution
to the problem of finding the minimum number of
tours; and Section 4 focuses on finding the set of tours
covering S with minimum total length. In this version,
we omit several proofs due to space restrictions.

2 Problem formulation

Let S = {s1, · · · , sn} be a set of disjoint segments
arranged on a line, O be a point on the plane corre-
sponding to a base station, and L be the maximum
distance that a drone with constant battery life can
travel. The problem is to find a set of drone routes
(tours) with lengths no greater than L starting and
ending at O so that they jointly traverse all segments
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in S with minimum total cost. Two objective func-
tions are considered: the number of tours or the total
traveled distance (sum of the lengths of the tours).
Since segments in S lie on a line, we define the

problems using the following notations. Let si =
[ai, bi], i = 1, 2, . . . , n be n disjoint intervals on the
line y = 0 such that a1 < a2 < · · · < an; a1, bn are the
edges of S. Let O = (0,−h) be the base station and
L > 0 be the maximum length of a tour using the full
battery. Formally, the problem is to compute a set of
tours T = {t1, t2, . . . , tm} covering S so that:

• 1DMinTours-problem: the number of tours m =
|T | is minimized.

• 1DMinDistance-problem:
∑m

i=1 li is minimized,
where li is the length of ti.

For simplicity, we assume that the tours of T are
given ordered, that is, from left to right or from right
to left. In addition, we consider other important nota-
tions and definitions. For an interval si = [ai, bi], we
term ai, bi as the left and right point respectively of
si. This concept is extended for any tour t: the left
point of t is the leftmost point of t that lies on the
line defined by the intervals covered by t; the right
point of t is defined analogously. If a point x ∈ si
for some si ∈ S, then we assume the relaxation of
x ∈ S. This is important to define subsets of S as
Sp,q = {x : x ∈ S, p ≤ x ≤ q}; then Tp,q is the set of
tours covering Sp,q. If p, q are the left and right points
respectively of the tour ti, then we define the portion
of S covered by ti as S

i
p,q, and S − ti as the part of S

not covered by ti. Finally, we consider that ti is a max-
imal tour if li = L, we term m as the minimal number
of tours to cover S, and T ∗ is the optimal set of tours
covering S. See Figure 1 for a visual explanation of
some of the aforementioned definitions.

O

a1 b1

ai bi
bi−1 an bn

ai−1 O′
Rp q

tj

Sj
pq

Figure 1: An example of a set S of intervals. A tour tj
(in red) is the path OpqO. The portion of S covered
by this tour is Sj

pq = [p, bi−1] ∪ [ai, q].

3 Minimizing the number of tours

In this section, we show that the 1DMinTours-problem
can be solved using the following greedy approach. For
a tour t = OpqO, let S − t be the closure of part of S
not covered by t.

Greedy Strategy (GS): Let f be the farthest
point from O in S. If S can be covered by one tour, per-
form a minimal length tour t covering S, else perform
a maximal tour t covering f and update S := S − t.

In the following, we prove that GS retrieves an
optimal solution (it is easy to see that the optimal
solution is not necessarily unique).

Theorem 1 GS computes an optimal solution for
minimizing the number of tours.

Proof. Proof by induction on m, the minimum num-
ber of tours.
Base Case: If all segments of S can be covered

with one tour, the greedy algorithm computes only
one tour using the farthest point from O.

Inductive Step: Suppose that the minimum num-
ber of tours covering a set S is at least two, i.e. m ≥ 2.
Let f ∈ S be the farthest point from O and let tf
be the maximal tour covering f . Assume w.l.o.g.
that f = bn (the proof is analogous if f = a1). Let
T ∗ = {t1, t2, . . . , tm}, tm be an optimal solution such
that the tour tm reaches f . Let S∗ be the set of points
in S covered by tours t1, t2, . . . , tm−1. Let S

′
be the

set of points in S not covered by tour tf . Since tf is
maximal, S′ ⊆ S∗. Then S′ can be covered by m− 1
tours (for example, t1, t2, . . . , tm−1). By the induction
hypothesis, the greedy algorithm covers S′ by at most
m−1 tours. Therefore the greedy algorithm computes
at most m covering tours for S. Since m is the min-
imum number of tours covering a set S, the number
of tours computed by the greedy algorithm is exactly
m. □

Theorem 2 The 1DMinTours-problem can be solved
in O(m log n) or O(m+ n), where n is the number of
segments and m is the minimal number of tours.

4 Minimizing the total distance

4.1 One segment

First, note that GS is not optimal for minimizing the
total distance, even for restricted scenarios where only
one segment is considered (i.e. n = 1). This is the
case of Figure 2, where the solution provided by GS
(shown in (a)) is worst than the solution (shown in (b)).
We extend GS to optimally solve the 1DMinDistance-
problem for only one segment.

Greedy Strategy with Projection Point
(GSP): Go to the untraveled point of S farthest from
O, and perform a maximal tour while the projection
point O′ is not reached. If possible, cover the last
part with one tour; otherwise, select the two tours
containing the projection point.
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(a) Greedy solution.
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(b) Coming to the base on the projection point.

Figure 2: GS is not optimal to cover segment [a, b] when the optimal set of tours for minimizing the total distance
includes the projection point O′.

Theorem 3 GSP is optimal for the 1DMinDistance-
problem with only one segment.

Proof. The optimal solution for minimizing the total
distance in one segment has the particularity that the
tours that do not include O′ have to be of maximum
length. Otherwise, for a tour of non-maximum length,
we can change its returning point for a point closer
to O that is also valid but with a lower distance to
the base. On the other hand, in the optimal solution
(this is unique), the projection point O′ can be covered
by one or two tours (since points in S are covered at
a maximum of two times). GSP is optimal since it
uses the aforementioned characterizations to build the
solution. First, GSP extracts the maximum-length
tours that do not contain O′. Finally, it checks if
the rest of the segment can be covered with one tour
(optimal), or if we need two. In the second case, the
optimal partition of the segment uses the projection
point, as this is the closest distance from O to S. □

Theorem 4 1DMinDistance-problem for one segment
can be solved in O(m) where m is the number of tours
of the optimal solution.

For two o more segments, the greedy approach does
not solve the problem. The reason is that each gap
between two segments poses a decision problem: cov-
ering it with a tour of maximum length (when it is
possible) or finishing the tour at the end of a segment
and start a new tour from the next one.

4.2 Segments to one side

In this letter, we only show how to solve the scenario
where all segments are on one side of the projection
point. The general case can be solved by using an
extension of this case. Formally, we call 1DMD-one-
side-problem to the 1DMinDistance-problem, with
an additional restriction: either 0 ≤ a1 or an ≤ 0.
Without loss of generality, we consider the case where
0 ≤ a1.

Let us built a discrete set using the following ap-
proach: For every bi, we consider the set of points Ci

defined by the jumps of the greedy solution starting
at bi and continuing until a gap is reached, or all the
segments are covered (Figure 3); each Ci contains at
most m points. Let C =

⋃
Ci, i ∈ [1 . . . n], be the

set of candidate points defined with this strategy that
contains, at most, nm points.

Lemma 5 The right point q of any tour tj in the
optimal solution T ∗ satisfies q ∈ C.

Proof. Assume tm ∈ T ∗ as the last tour with the
rightmost point not in C. Let q be the right point
of tm and si = [ai, bi] the segment where q lies; then
q ∈ (ai, bi). Hence, the tour tm+1 with leftmost point
q, has a length lower than L because the rightmost
point of tm+1 is in C. As ai < q, we can increase
the length of tm+1, hence reducing the total distance.
This contradicts that T ∗ is optimal. □

Lemma 6 The left point p of any tour tj in the op-
timal solution T ∗ satisfies that p is the left point of
some interval of S, or tj is maximal.

Proof. Assume ti ∈ T ∗ as a non-maximum length
tour with the left point p ∈ (ai, bi] for some interval
in S. Then, we can increase ti by moving p left to-
wards, reducing the distance from the base station
to p. This contradicts the optimality of T ∗. Hence
tours of non-maximal length lie only at the left point
of some interval of S. □

As a consequence of Lemma 6, it is straightforward
to notice that the left point of a tour in the optimal
solution is the left point of a segment, or is in C. Using
this fact and Lemma 5, we design a polynomial algo-
rithm based on dynamic programming. Our algorithm
iterates over the sorted points of C, in ascending order.
For every point ck ∈ C, we compute the maximum-
length tour starting on it, and its associated left point
c′k. We know that either c′k ∈ C, or is the left point
of some interval of S. Let jk (j′k) be the index of the
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Figure 3: The one side case. Construction of the candidate set C.

segment where ck (c′k) is located, and be Σ∗(ck) the
optimal cost for Sa1,ck . The formula for any ck is as

follows:

Σ∗(ck) =


len(a1, ck) if a1 = c′k
min

j′k≤j≤jk
{len(aj , ck) + Σ∗(bj−1))} if c′k /∈ C

min{L+Σ∗(c′k), min
j′k<j≤jk

{len(aj , ck) + Σ∗(bj−1)}}, otherwise,

(1)

where len(aj , ck) is the length of the tour that defines
the interval Saj ,ck ; and aj (bj) is the left (right) point
of any segment contained within the maximum-length
tour starting at ck. A maximum of n − 1 values of
aj needs to be checked for every ck; one for every
gap. We term the algorithm based on the formula 1
as DPOS (Dynamic Programming on One Side). As a
consequence of Lemmas 5 and 6, we have:

Theorem 7 DPOS is optimal for the 1DMD-one-side-
problem.

Theorem 8 The 1DMD-one-side problem can be
solved in O(n2) + O(nm), where n is the number of
segments and m is the number of tours in the optimal
solution.
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