
XX Spanish Meeting on Computational Geometry, Santiago de Compostela, July 3-5, 2023

Algebraically-informed deep networks for associative evolution algebras

Desamparados Fernández-Ternero∗1, Vı́ctor Manuel Gómez-Sousa†1, Juan Núñez-Valdés‡1, and Eduardo
Paluzo-Hidalgo§2

1Department of Geometry and Topology. Faculty of Mathematics, University of Seville, Seville, Spain.
2Department of Applied Mathematics I. University of Seville, Seville, Spain.

Abstract

In this paper, we extend the application of the
algebraically-informed deep networks (AIDNs) intro-
duced in [4] in the case of evolution algebras. For
the associative evolution algebra, the performance of
AIDNs is tested for known theoretical results. This is
a first step towards neural-network-aided classification
of evolution algebras.

1 Introduction

Evolution algebras were firstly introduced by Tian in
his Ph.D. Thesis [6] in 2004 and later published in
a book in 2008 [7]. These types of algebras belong
to the family of genetic algebras and have direct ap-
plications in non-Mendelian genetics [8]. In addition,
its applications to other branches of mathematics are
numerous, being connected, among others, with graph
theory, stochastic processes and Markov chains, group
theory and mathematical physics.
Classification problems in evolution algebras gen-

erally involve a large number of nonlinear equations.
This makes classifying evolution algebras a difficult
task. For instance, the classification of those evolution
algebras whose evolution operator (the main operator
of the algebra) is a homomorphism is still incomplete
[2]. The purpose of this paper is to help in this task
by searching for representations of evolution algebras
through neural networks, which will give us an approx-
imation of possible solutions to the problem that we
can later prove theoretically. To verify the effective-
ness of this method, we will use it for classifications
already achieved theoretically, such as the classifica-
tion of associative evolution algebras [1] or that of

∗Email: desamfer@us.es
Research supported by national projects PID2020-118753GB-
100 and PID2020-114474GB-I00, autonomic project ProyExcel-
00827 and autonomic P.A.I. Group FQM-326.

†Email: victor.manuel.gomez.sousa@gmail.com
Research supported by national project PID2020-118753GB-100
and autonomic P.A.I. Group FQM-326.

‡Email: jnvaldes@us.es
Research supported by autonomic P.A.I. Group FQM-326.

§Email: epaluzo@us.es
Research partially supported by national project PID2019-
107339GB-I00.

those evolution algebras whose evolution operator is a
derivation [3].
Algebraically-informed deep networks were intro-

duced in [4]. There, the authors provide a correspon-
dence between a representation of an algebraic struc-
ture and feed-forward neural networks where each
generator is associated with a neural network. To
find an appropriate representation, those networks are
trained using a traditional training algorithm which
error function is based on the relations needed to be
satisfied by the generators. In the case of associa-
tive evolution algebras, it is known that its structure
matrix is diagonal for any dimension. In this paper,
we adapt the AIDN implementation for associative
evolution algebras and test its performance.

This paper is organized as follows: in Section 2, the
basic concepts of evolution algebras, neural networks
and AIDN are provided. Next, in Section 3, AIDNs
are extended for associative evolution algebras and
experiments are depicted. Finally, in Section 4, some
conclusions and future work are described.

2 Background

This section provides a brief introduction to evolution
algebras, neural networks and algebraically-informed
deep networks over the real field. However, it can be
easily extended to the complex field.

2.1 Evolution algebras

An algebra E ≡ (E,+, ·) is said to be an evolution
algebra if there exists a basis B = {ei}ni=1 of E such
that ei · ej = 0, for all i ≠ j. Since B is a basis, the
product ej · ej = e2j can be written as

∑
i∈Λ aijei, for

some structure constants aij ∈ R. So, the product on
E is determined by the structure matrix A = (aij).
In general, evolution algebras are non-associative.

However, in this paper we will work with those that
are. This type of evolution algebras have been studied
in depth in [1], where it is shown the following theorem

Theorem 1 Let E be an evolution algebra. It is
equivalent:

1. E is associative.

XX Spanish Meeting on Computational Geometry, Santiago de Compostela, July 3-5, 2023

2. ei · e2j = 0, for all i ̸= j.

3. aijaki = 0, for all i ̸= j and for all k.

4. There exists a rearrangement of the basis B such
that the structure matrix has the form(

Dr×r 0r×s

Ms×r 0s×s

)
,

where r + s = n and

• Dr×r is a diagonal matrix of order r.

• Ms×r is a s× r matrix.

• 0r×s and 0s×s are null matrices of dimension
r × s and s× s, respectively.

An evolution algebra is said to be non-degenerate
if e2j ̸= 0, for all j. In this case, the previous theorem
turns out to be

Corollary 2 Let E be a non-degenerate evolution
algebra with evolution operator L. Then, the following
assertions are equivalent

1. E is associative.

2. ei · e2j = 0, for all i ̸= j.

3. aijaki = 0, for all i ̸= j and for all k.

4. The structure matrix is a diagonal matrix with
nonzero diagonal elements.

For example, the evolution algebra with basis
{e1, e2, e3} and product defined by

e21 = e1,

e22 = 2e2,

e23 = 3e3,

is a non-degenerate associative evolution algebra, since
its structure matrix is Diag(1, 2, 3).

2.2 Neural networks

A neural network is a function Net : Rdin → Rdout

defined by a composition of layer functions fi : Rni →
Rmi , that is to say, Net = fL ◦ · · · ◦f1. The layer func-
tions are of the form fi(x) = αi(Wi(x)+bi), where Wi

is a mi×ni matrix, bi is a vector in Rmi and αi is the
activation function, a chosen function (generally non
linear) applied coordinate-wisely to an input vector.
We will denote the set of neural networks of the

form Net: Rn → Rn as N (Rn). This set is closed
under composition of functions and hence has a natural
algebraic structure (N (Rn),+, ◦).
The set of weights of a neural network are trained

using a gradient-based training algorithm induced by
a loss function L that measures how far is the output

of the neural network from the desired output. There
exist plenty of different hyperparameters to be tuned in
a neural network and a training algorithm. To name a
few: the number of layers and nodes, the loss function,
the learning rate, the number of epochs, among others.

2.3 Algebraically-informed deep networks (AIDN)

Let S = {si}ni=1 be a set of formal symbols (generators)
and R = {ri}ki=1 a formal set of equations satisfying
these generators. The system ⟨S | R⟩ is called a
presentation.

Presentations can encode different algebraic objects
depending on the algebraic operations that we are
willing to allow while solving the algebraic equations of
R. For example, if we allow operations of addition and
scalar multiplication by elements of a field satisfying
the axioms implied in the definition of vector space,
in addition to a bilinear product, then the resulting
algebraic structure induced by the presentation ⟨S | R⟩
is an algebra. Depending on the properties that we
allow in the product, this algebra can be, for example,
associative or unitary.
We are interested in finding neural networks

{fi(x; θi)}ni=1, where θi ∈ Rki is the parameter vector
of the network fi, such that these neural networks
correspond to the generators of S and satisfy the same
relations of R. Formally, this is equivalent to finding
a homomorphism from the algebraic structure ⟨S | R⟩
to (N (Rn),+, ◦).

The AIDN algorithm finds the weights {θi}ni=1 of the
networks {fi(x; θi)}ni=1 by defining the loss function
as follows

L(f1, . . . , fn) =
k∑

i=1

∥ F(ri) ∥22,

where F(ri) is the relation ri written in terms of the
networks {fi(x; θi)} and ∥ · ∥2 is the L2 norm. This
loss function is minimized using any known neural
network training algorithm such as gradient descent
or RMSprop [5].

3 AIDN for associative evolution algebras

In the case of associative evolution algebras, we con-
sidered a fixed canonical basis B in dimension n, hence
we want to find a set of generators corresponding
to the structure constants aij ∈ R. Let us describe,
firstly, the set of relations needed to be satisfied. The
third statemen of Theorem 1 specifies the rest of the
relations needed for the desired representation.
Finally, we desired to find those algebras that are

not trivial (i.e. its structure matrix is not null), so we
can add a final set of relations for the representation,
guaranteeing that a column in the structure matrix is
not null by minimizing 1∑n

i=1 |aij | for all j ∈ [[1, n]]1.

1Let us denote {1, . . . , n} by [[1, n]].

XX Spanish Meeting on Computational Geometry, Santiago de Compostela, July 3-5, 2023

Therefore, an associative algebra representation is
given by n2 generators {aij}i,j∈[[1,n]] subject to the
following relations:

1. For all i ̸= j and for all k: aijaki = 0.

2. For all j ∈ [[1, n]]: minimize 1∑n
i=1 |aij | .

Let us remark that the first set of relations is com-
posed of (n2 − n) · n equations, and the second set is
composed of n equations. As mentioned above, the
basis of the associative evolution algebra will be fixed
as the canonical basis which is composed of one-hot
vectors and the definition of the product induced by
the obtained generators. Therefore, the AIDN repre-
sentation of the algebra will be based on finding a set
of feed-forward neural networks {fij}i,j∈[[1,n]] ⊂ N (R)
associated to each of the structure constants which
satisfy the conditions stated above. The architecture
of those neural networks can be tuned by the user. In
our case, we decided to use very simple feed-forward
neural networks with just one hidden layer (1×12×1)
and a linear activation function. In the case of higher
dimensional representations, the number of layers and
nodes can be increased. The neural networks were
trained using the RMSprop training algorithm and
the structure matrices were computed for dimensions
2, 3, and 4. Each of the generators is the result of
applying neural networks to a specific real number
parameter that was used during the training process
as input data. In Table 1, examples of the matrices
obtained are displayed with the error values of the er-
ror function which history is depicted in Figure 1. Let
us remark that, as expected, the structure matrices
obtained are diagonal matrices, satisfying the already
known theoretical results.

4 Conclusions

In this paper, we have applied AIDNs to associative
evolution algebras. These networks were trained for
different dimensions. After the training process, the
matrices obtained satisfied the known theoretical re-
sults for the structure matrix of associative evolution
algebras, known to be diagonal. In future work, we
plan to apply AIDNs towards patterns discovery for
other types of evolution algebras.

Code availability The code of the exper-
iments is available in the following GitHub
repository https://github.com/Cimagroup/

AIDN-for-Evolution-Algebras.

Dimension Structure matrix

2

(
145.22 0

0 −143.69

)
3

19.94 0 0
0 −20.81 0
0 0 20.68

4

−23 0 0 0
0 −23.93 0 0
0 0 −22.74 0
0 0 0 −22.27

Table 1: Examples of structure matrices obtained after
training AIDNs are depicted together with the mean of
the loss values for all relations for different dimensions.
The reached loss values were of the order of 10−4 to
10−5.

Figure 1: Neural networks were trained for 50000
epochs with a learning rate of 10−3. As depicted,
the evolution of the loss function during the training
algorithm was similar in the three cases.

References

[1] Desamparados Fernández-Ternero, Vı́ctor M.
Gómez-Sousa, and Juan Núñez-Valdés. “A Char-
acterization of Associative Evolution Algebras”.
In: Contemp. Math. 4.1 (2023), pp. 42–48.

[2] Desamparados Fernández-Ternero, Vı́ctor M.
Gómez-Sousa, and Juan Núñez-Valdés. “Evolu-
tion algebras whose evolution operator is a ho-
momorphism”. In: Comput. Math. Methods. 3.6
(2021). e1200.

[3] Desamparados Fernández-Ternero, Vı́ctor M.
Gómez-Sousa, and Juan Núñez-Valdés. “Using
the Evolution Operator to Classify Evolution Al-
gebras”. In: Math. Comput. Appl. 26.3 (2021).
Art. 57.

https://github.com/Cimagroup/AIDN-for-Evolution-Algebras
https://github.com/Cimagroup/AIDN-for-Evolution-Algebras

XX Spanish Meeting on Computational Geometry, Santiago de Compostela, July 3-5, 2023

[4] Mustafa Hajij et al. Algebraically-Informed Deep
Networks (AIDN): A Deep Learning Approach
to Represent Algebraic Structures. 2021. arXiv:
2012.01141v3 [cs.LG].

[5] Sebastian Ruder. An overview of gradient de-
scent optimization algorithms. 2017. arXiv: 1609.
04747v2 [cs.LG].

[6] Jianjun Paul Tian. “Evolution Algebra Theory”.
PhD thesis. Riverside, CA: University of Califor-
nia, 2004.

[7] Jianjun Paul Tian. Evolution Algebras and Their
Applications. Berlin, Germany: Springer, 2008.

[8] Jianjun Paul Tian and Petr Vojtechovsky. “Math-
ematical concepts of evolution algebras in non-
Mendelian genetics”. In: Quasigr. Relat. Syst. 14.1
(2006), pp. 111–122.

https://arxiv.org/abs/2012.01141v3
https://arxiv.org/abs/1609.04747v2
https://arxiv.org/abs/1609.04747v2

	Introduction
	Background
	Evolution algebras
	Neural networks
	Algebraically-informed deep networks (AIDN)

	AIDN for associative evolution algebras
	Conclusions

