Some routing problems on a half-line with release times and deadlines

Alfredo García* ${ }^{* 1}$ and Javier Tejel* ${ }^{* 1}$
${ }^{1}$ Departamento de Métodos Estadísticos and IUMA, Universidad de Zaragoza, Spain

The following problem is studied in 1, 3]. Let $N=$ $\{1,2, \ldots, n\}$ be a set of customers located on the real half-line \mathbb{R}^{+}and let D be a depot located at $x=0$. The distance (and also the travel time) from customer i to the depot is denoted by τ_{i}. A vehicle has to deliver goods from the depot to the customers. Each customer places an order to the depot and this order is associated with a time window $\left[r_{i}, l_{i}\right]$, with $l_{i}=r_{i}+S-\tau_{i}$. The release time r_{i} specifies the earliest possible time the vehicle can depart the depot to deliver at i. S can be seen as a service guarantee such that customer i cannot be served after $r_{i}+S$. Thus, $r_{i}+S-\tau_{i}$ is the latest dispatch time for customer i. For example, we can think of a restaurant delivering meals at home as a depot, the release time of an order (a customer ordering for a meal) as the time that the order can be dispatched from the restaurant after preparing the meal, and S as the time in which the restaurant guaranties that the order will be delivered.

The problem analyzed in [3] is determining the minimum possible completion time c^{*} of a schedule of delivery routes that can be executed by a single driver, each starting and ending at the depot, such that each order i is dispatched at or after r_{i} and delivered at or before $r_{i}+S$. Any feasible solution to the problem will consist of a set of k routes, visiting a subset of customers in each route. Assuming that the customers are ordered according to their release times, that is, $r_{1} \leq \ldots \leq r_{n}$, it is proved in [3] that there is always an optimal delivery schedule with noninterlacing routes, where two routes K_{1} and K_{2}, with $\min \left\{i \mid i \in K_{1}\right\}<\min \left\{j \mid j \in K_{2}\right\}$, are non-interlacing if and only if $\max \left\{r_{i} \mid i \in K_{1}\right\}<\min \left\{r_{j} \mid j \in K_{2}\right\}$. As a consequence, in any delivery schedule with noninterlacing routes, the customers visited in any route have consecutive release times.

Geometrically, one can imagine the set of customers as a set of n horizontal segments s_{1}, \ldots, s_{n} such that the y-coordinate of s_{i} is τ_{i} and the x-coordinates of the endpoints of s_{i} are r_{i} and l_{i}, respectively. The abscissa axis represents time. For instance, Figure 1 shows a set of eight customers and a feasible schedule (in red), consisting of three routes, K_{1}, K_{2} and K_{3}, to

[^0]

Figure 1: A feasible schedule to serve eight customers.
serve the eight customers. After waiting at the depot, K_{1} starts at r_{2}, dispatches orders 2,1 and 3 , and ends at $r_{2}+2 \tau_{3} . K_{2}$ starts at $r_{2}+2 \tau_{3}$, dispatches orders 4 and 5 , and ends at $r_{2}+2 \tau_{3}+2 \tau_{5}$. Finally, after waiting again at the depot for a while, K_{3} starts at r_{8}, dispatches orders 8,7 and 6 , and ends at $r_{8}+2 \tau_{6}$.
Let $c(i)$ be the minimum completion time of a noninterlacing schedule serving orders $\{1, \ldots, i\}$, or ∞ if it is not possible to serve $\{1, \ldots, i\}$ feasibly with a single server. Thus, c^{*} will be given by $c(n)$. Defining $c(0)=0$, the following recurrence [3] allows one to compute $c(i)$, for $i=1, \ldots, n$:

$$
\begin{aligned}
& c(i)=\min _{0 \leq j<i}\left\{\max \left\{c(j), r_{i}\right\}+2 \max _{j<k \leq i}\left\{\tau_{k}\right\} \mid\right. \\
& \left.\max \left\{c(j), r_{i}\right\} \leq \min _{j<k \leq i}\left\{l_{k}\right\}\right\}
\end{aligned}
$$

In this talk, we will show how to solve this recurrence in $O(n \log n)$ time, improving the $O\left(n^{2}\right)$ algorithm given in 3]. In addition, using the algorithm described in [2], if $S=\infty$, that is, there are no deadlines, then the previous recurrence can be solved in $O(n)$ time, improving the $O\left(n^{2}\right)$ algorithm provided in 3].

References

[1] C. Archetti, D. Feillet and M.G. Speranza, Complexity of routing problems with release times, European Journal of Operational Research 247 (2015), 797-803.
[2] L. Larmore and B. Schieber, On-line dynamic programming with applications to the prediction of RNA secondary structure, J. of Algorithms 12 (1991), 490515.
[3] D. Reyes, A.L. Erera and M.W.P. Savelsbergh, Complexity of routing problems with release dates and deadlines, European Journal of Operational Research 266 (2018), 29-34.

[^0]: *Emails: \{olaverri, jtejel\}@unizar.es. Research supported by project PID2019-104129GB-I00 / AEI / 10.13039/501100011033 of the Spanish Ministry of Science and Innovation, and by Gobierno de Aragón project E41-23R.

