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Crossing minimal and generalized convex drawings: 2 non-hard problems
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Simple drawings are drawings of graphs in the plane
such that each pair of edges meets in at most one point,
either a common endvertex or a crossing. In this work
we study two problems on simple drawings that are
hard in general but get easy on a certain subclass. As
the first problem, Arroyo et al. [1] showed that it is
NP-complete to decide whether a specific edge can be
added to a simple drawing of a non-complete graph
without violating simplicity. In contrast to this, by
Levi’s Extension Lemma, every pseudolinear drawing
can be extended by any set of edges. We show a similar
result for crossing minimal drawings, that is, drawings
of a graph G which contain the minimum number of
crossings over all drawings of G.

Theorem 1 Let D be a crossing minimal drawing of
a graph on n vertices. Then D can be extended to a
simple drawing of the complete graph Kn.

Proof idea. Note that every crossing minimal draw-
ing D is a simple drawing. In a first step we show that
adding a single edge such that it creates a minimum
number of additional crossings results in a simple draw-
ing D′. However, D′ need not be crossing minimal
anymore. So in a second step we add a set of edges
simultaneously to D such that each single added edge
has a minimum number of crossings with D. Over
all possibilities to do so, we then show that choosing
a drawing D′′ which in addition minimizes the total
number of crossings ensures that D′′ is simple. □

While it is known that no crossing minimal drawing
of Kn is pseudolinear for large enough n, Arroyo et
al. [2] asked the question whether all crossing minimal
drawings of Kn might be generalized convex drawings
(short g-convex ). These are simple drawings where
every triangle has a convex side ∆, that is, for each
pair of vertices in ∆ also the edge connecting them lies
completely inside ∆. If there exists a choice of a convex
side for each triangle such that every triangle T2, being
contained in the convex side ∆1 of a triangle T1, has
its convex side ∆2 contained in ∆1, then the drawing
is called hereditarily convex (short h-convex ).
This brings us to the second problem. Garćıa et

al. [3] showed that it is NP-complete to decide whether

∗Email: orthaber@ist.tugraz.at. Research supported by the
Austrian Science Fund (FWF) grant W1230.

a simple drawing D of Kn contains a plane (no two
edges cross) subdrawing with a given number of edges.
In this context we call a subdrawing of D maximal
plane if it is plane and no edge of D can be added to
it without violating planarity. We call a subdrawing
maximum plane if it is plane and contains the highest
number of edges over all plane subdrawings of D. If a
plane subdrawing contains 3n− 6 edges, then we call
it a combinatorial triangulation.

Theorem 2 Let D be a g-convex drawing of Kn.
Then every maximal plane subdrawing of D is maxi-
mum plane. Moreover, if D is h-convex but not pseu-
dolinear, then every maximal plane subdrawing of D
is a combinatorial triangulation.

We can show this by combining some results from
[2] and [3]. We can further confirm by computer that
all crossing minimal drawings of Kn for n ≤ 12 are
h-convex. Since all crossing minimal straight-line or
pseudolinear drawings are known to have a triangular
convex hull, this gives rise to the following conjecture.

Conjecture 3 Let D be a crossing minimal drawing
of Kn for n ≥ 3. Then every maximal plane subdraw-
ing of D is a combinatorial triangulation.
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