
XX Spanish Meeting on Computational Geometry, Santiago de Compostela, July 3-5, 2023

On strip separability of bichromatic point sets

Nicolau Oliver∗1 and Carlos Seara†1

1Universidad Politécnica de Catalunya

Abstract

In this paper we extend and improve algorithms for the
separability of red and blue points in the plane using
four parallel lines. We also prove sufficient conditions
to meet this separability criteria.

1 Introduction

Separability problems of a bichromatic point set in
R2 by a set of parallel lines were studied in Arkin et
al. [1, 2], Hurtado et al. [4], and Seara [9]. The number
of these lines is denoted by k. It is well known that
two object sets are line separable (k = 1) if and only
if their convex hulls do not intersect. The decision
problem of linear separability for two disjoint sets of
points, segments, polygons, or circles can be solved in
linear time, see Megiddo [6], and O’Rourke et al. [8].

Let B be a set of blue points and R a disjoint set of
red points B∩R = ∅, both in the plane, |B| = |R| = n,
and let CH(B) and CH(R) be their convex hulls.
The minimum number k of parallel lines separating R
and B into monochromatic strips can be computed in
O(n2 log n) time and O(n2) space. If k ≤ 4, there ex-
ists an algorithm that solves the problem in O(n log n)
time and O(n) space under a constraint on the point
sets. We ask for determining the minimum k for sepa-
rating R and B, or whether there exists some direction
such that R and B can be separated with k lines.

Open problem 1 Can it be decided if B and R are
separable by four parallel lines in O(n log n) time and
O(n) space if CH(B) does not contain any red point?

The algorithm in [9] has a constraint over the points.
We try to solve the problem without the constraint. If
a general algorithm for k = 4 is found, maybe we can
generalize it for any k. Another open problem in [9]:

Open problem 2 Can it be decided in O(kn log n)
time if B and R are separable with at most k ≥ 5
parallel lines?

∗Email: nicolau.oliver@estudiantat.upc.edu.
†Email: carlos.seara@upc.edu. Supported by PID2019-

104129GB-I00/ MCIN/ AEI/ 10.13039/501100011033.

Let “/” be denote one of the separating parallel
lines. We refer to red/blue/red/blue . . . as the no-
tation for the subsets R1/B1/R2/B2/ . . . , and the
separators as s1, s2, s3, s4, Assuming k is mini-
mal for any direction, only two possible orderings of
the subsets are possible: red/blue/red/blue/ . . . , or
blue/red/blue/red/ From now on consider only
red/blue/red/blue/ . . . separability. A caliper rotates
clockwise from 0 to π around a convex polygon, and
the separators are denoted as si − sj . Calipers are
always parallel and rotate in sync.

Observation 3 All points outside the polygon enter
and leave the rotating caliper once, and all points
inside the polygon are always inside the caliper.

We say that a point p inside a caliper is “alive” and
is otherwise “dead”. The supporting lines of p with
respect to the polygon give an interval of directions
in which p is alive; one such line corresponds to the
entrance slope of p (its “birth”) and the other to the
departure slope of p (its “death”). The clockwise slope
of the supporting lines with respect to the x-axis are
computed to be inside the [0, π] interval.

2 Separability using four lines

For the k = 2, 3 strip separability, Arkin et al. [2]
shows O(n log n) time optimal algorithms. From now
on we only consider relevant directions that need at
least k = 4 lines for separability. The algorithm starts
by constructing a caliper that rotates around CH(B).
This caliper will constitute the separators s1 and s4,
see Figure 1. Then, it computes the support lines of
the red points with respect to CH(B) and builds the
sorted list of birth/death events in O(n log n) time.
The slopes of the support lines belong to [0, π]. With
this event list the caliper can be rotated over CH(B),
yielding the sets R1,R2,R3 for all directions. See Fig-
ure 1. Next, the algorithm separates the blue points
into B1 and B2. Take a red point g inside CH(B) as
a guard.

Observation 4 (i) The caliper around CH(B) is
never empty of red points. (ii) Red points inside
CH(B), including g, belong to R2. (iii) A line through
g separates B1 from B2. See Figure 1.

XX Spanish Meeting on Computational Geometry, Santiago de Compostela, July 3-5, 2023

s1 s2 s3 s4

R1 B1

R2

B2
R3g

Figure 1: Separability by 4 lines. A red point g inside
CH(B) is a guard that separates B1 and B2 for any
direction. A jump event classifying B1 and B2.

Jump events describe how the blue points belong to B1

or B2 as the caliper rotates. The list of jump events
follows from Observation 4, from sorting the angles of
the lines through g and each blue point in O(n log n)
time. This list with O(n) angles is the bi-partition
list of the guard g. By merging the jump events with
the birth and death events we can keep track of all
the subsets R1/B1/R2/B2/R3 as we rotate the caliper.
See Figure 1.

In the interval between consecutive events [ei, ei+1],
the subsets R1/B1/R2/B2/R3 don’t change. Neither
do their dynamic convex hulls, abbreviated DCH.
This interval is separable if DCH(B1) with DCH(R2)
and DCH(R2) with DCH(B2) are separable.
Thus, we compute the supporting lines between

the adjacent pairs of dynamic convex hulls (B1/R2,
R2/B2). Intersecting these intervals Θ1, Θ2, Θ3, and
Θ4 with [ei, ei+1]. Repeat for each consecutive pair of
events, and merge the results by calculating the union
of intervals.
Computing these dynamic convex hulls takes

O(n log n) time, and updating them takes O(log n)
time according to Brodal and Jacob [3]. So the algo-
rithm has O(n log n) time complexity.

2.1 New algorithm for four line separability

Assume that there are no red points (guards) inside
CH(B). Let m guards G =< g1, . . . , gm > be a se-
quence of guards sorted by birth angle. As above for
g, for all gi ∈ G compute the sorted bi-partition list in
total O(mn log n) time. This guarantees that we can
use the bi-partition lists for the entire rotation.

To separate the blue points into B1 and B2, we need
at least one guard gi at any direction inside the caliper,
and we use the current guard bi-partition list to do it.
When a guard dies, another takes its place.

Observation 5 There always exists the set G ⊆ R,
such that for all relevant directions there is at least
one guard gi ∈ G inside the caliper around CH(B).

2.2 Minimizing the guard set

The guards have a birth and death event associated,
forming the living angle interval. Before an alive
guard dies, the next must already be alive. The liv-
ing angle interval is referred to as the angle that is
“guarded/covered” by that guard, see Figure 2; and
those intervals must overlap totally covering [0, π].
Thus, the problem of minimizing guards is equivalent
to that of minimizing the sets to cover [0, π].

r1

r2

r3

r4

r5

r6

r7

r8

0 2π

r1 r2 r3 r4 r5 r6 r7 r8

Figure 2: A set of 8 red points covering [0, 2π].

3 Sufficient conditions for four line separability

As m could be linear in n, this begs the question of
finding conditions over R and B that guarantee that
m is constant. There exists a family of configurations
with a constant number of guards.

Condition 1 If there exist guards a, b, c ∈ R such

that all the sides of the triangle Èabc cross CH(B),
then G = {a, b, c} is a guard set that covers the entire
rotation of the caliper.

Thus, all configurations that satisfy the Condition 1
have an optimal set of guards of constant size. The
guard set G = {a, b, c} had a close relationship with
the triangle it formed. So, we extend this geometrical
analysis to other guard sets: Trace the polygonal line
given by the sequence, closing it by adding an edge
from the last to the first guard.

Condition 2 < g1, . . . , gm > is a guard sequence and
all the edges of the closed polygonal line traced by the
sequence of guards cross CH(B), and m is odd.

Lemma 6 IfG =< g1, . . . , gm > satisfies Condition 2,
then G covers the entire rotation of the caliper.

This family of closed polygonal lines can be considered
for a constant value of m, as m = 3 yields the triangle.

XX Spanish Meeting on Computational Geometry, Santiago de Compostela, July 3-5, 2023

The polygons that result from Condition 2 can be from
convex to self intersecting. It includes the family of
star polygons, with a special interest in those of the
form {m/⌊m

2 ⌋}. For an example, see the pentagram
{5/2} for m = 5 and the heptagram {7/3} in Figure 3.

Figure 3: A pentagram {5/2} and a heptagram {7/3}.

Corollary 7 If G =< g1, . . . , gm > traces an odd star
polygon, whose segments all intersect CH(B), then G
covers the entire rotation of the caliper.

The star polygons show that the new algorithm does
indeed allow for solving much more general configura-
tions. Nevertheless, Lemma 6 is a sufficient but not
necessary condition for an input R and B to have a
constant size set of guards. See Figure 4.

g1

g2
g3

g4

g5

Figure 4: Guards covering the entire rotation, but not
tracing a star polygon. Equivalent guards g1 ≡ g5.

If two guards have the same living angle, they would
receive identical use by the algorithm. Thus, two
guards are said to be equivalent if the interval they
cover is identical, i.e. the support lines of both guards
are pairwise parallel. For each red point exterior to
CH(B) there is precisely only one other point that
satisfies this equivalence: find the support lines of
the original point, trace the two parallel support lines
tangent to CH(B) on the antipodal points, its inter-
section point is the equivalent guard. See Figure 4.
This equivalence relation reflects that it is possible
to swap a guard with its equivalent one, without it
affecting the execution of the algorithm.

Observation 8 If G =< g1, . . . , gm > covers the en-
tire rotation withm odd, there exists equivalent guards
G′ =< g′1, . . . , g

′
m > that trace a star polygon.

4 Finding the optimal guards

As pointed out before, the new algorithm complexity
depends on the set G of guards. So it is central to
find a constant size G. The guards can be understood
as the interval of the caliper rotation they cover, it
is the only relevant attribute for the algorithm. This
suggests representing the guards as intervals in the unit
circle, and each guard being their covering interval.
See Figure 5.

Such representation leads to a minimization interval
cover problems in R: to find, amongst a set of intervals,
the minimum amount such that the union covers an
interval [a, b]. This is a well-known problem [7] that
can be solved via a greedy algorithm in O(n log n)
time with respect to the number of intervals in the
set. This indeed can be adapted to find a minimal
G. The intersection graph of the intervals has as

g

g′

Figure 5: Red guards and their angular intervals.

vertices the intervals, and two vertices are connected
if the intersection of the intervals is not empty [5]. See
Figure 6. This graph represents pairs of guards that
are both alive in some direction. The rotation of the
caliper is clockwise, so the edges are arcs and satisfy
that the origin guard dies before the destination guard.
The direction of the arc captures how the sequence
< g1, g2, . . . , gm > jumps from one guard to the next.

1

2

3

4

5
6

7
8

9

10

1
2

3

4

5
6

7

8

9

10

Figure 6: Intersection graph of angular intervals.

Observation 9 gi dominates gj if all directions cov-
ered by gj are also covered by gi.

Only the red points that are not dominated by other

XX Spanish Meeting on Computational Geometry, Santiago de Compostela, July 3-5, 2023

red points are considered as candidates. This pruning
can be done by sorting the guards in O(n log n) time.

4.1 An algorithm to find optimal guards

Once dominated red points have been pruned, we find
the smallest size set of guards. Let Gopt be an optimal
guard set, and < g1, . . . , gm >opt its sequence. A local
optimality can be found among consecutive guards of
the sequence. Given gopti ∈ < g1, . . . , gm >opt there
might be several guards that cover the angle of death of
gopti . Let candidates(gi) be the set of guards that could
“succeed” gi. It follows that gopti+1 ∈ candidates(gi).
These candidates can be understood more easily as
the adjacent vertices of gi in the intersection graph.
From the set candidates(gi), a greedy heuristic

chooses the guard that dies the last. The candidate
selected by this heuristic will be alive at least for all
directions covered by any guard in candidates(gopti),

clockwise from gopti death. Let ggreedyi+1 be this greedy
choice of candidate.

Observation 10 ggreedyi+1 is as optimal as gopti+1.

This is the same greedy heuristic used to solve the
classical interval cover problem. Given this heuris-
tic, instead of representing all the outgoing edges
for each gi in the graph, just draw the ones cho-
sen by the greedy heuristic. Omitting degenerate
cases, all vertices now have at most one outgoing
degree. If we assume that R and B are separable
using k = 4 lines, the whole rotation must be cov-
ered, so ∀gi |candidates(gi)| ≥ 1. This results in
degout(gi) = 1. This graph will be referred to as the
greedy intersection graph, GIG = (V,E), where the
vertices V = Rpruned exclude dominated guards, and
it is computed in O(n log n) time from the intervals.

Observation 11 If R and B are separable by k = 4
lines, the vertices of GIG have degout(gi) = 1 and the
number of edges is

∑n
i degout(gi) = n.

First, GIG can’t be acyclic, meaning that it is not
possible to cover the entire rotation. So, GIG has
at least a directed cycle of length 2, and the cycle
corresponds to a < g1, . . . , gm >opt. In fact, each
connected component of the GIG must have one and
only one cycle. Any path starting from any vertex
eventually ends up in one of those cycles.

Observation 12 GIG cycles have the same length.

A way of finding < g1, . . . , gm >opt can be described
in terms of executing search algorithms over GIG, see
Tarjan [10]: for any vertex in GIG, follow the arcs
until detecting a cycle, which is an O(n log n) time
algorithm. Finally, we have an algorithm that finds
the smallest set G of guards, even in the worst case
that m = n.

Thus, in O(n log n) time we can detect if the in-
put can be solved by the new algorithm in optimal
O(n log n) time.

5 The second open question

The main insight is that the new k = 4 algorithm
works because it imposes a similar structure to the
k = 2 algorithm. The new k = 4 algorithm rotates
an extra caliper around the CH(Rrec), where Rrec

(Red recursive) are the points inside CH(B). If a
few blue points lay inside CH(Rrec), call them Brec,
then the recursive algorithm rotates a third caliper
around CH(Brec). While the substructure repeats, the
recursive algorithm can nest further calipers. These
are used in a very similar manner to how they are used
in the new k = 4 algorithm.
For each of these recursively defined convex hulls,

compute the same events as for the new k = 4 algo-
rithm. Each nested hull bi-partitions the hull that con-
tains it. Each caliper determines a birth and death for
each point. The cost of all these operations amounts
to repeating the computations k times, once per each
nested caliper. The events generated are thus O(kn),
and the total cost is O(kn log n).

References

[1] E. M. Arkin, F. Hurtado, J. S. Mitchell, C. Seara, and
S. S. Skiena. Some separability problems in the plane.
16th EuroCG, Eilat, Israel, March 13-15, 2000.

[2] E. M. Arkin, F. Hurtado, J. S. Mitchell, C. Seara,
and S. S. Skiena. Some lower bounds on geometric
separability problems. IJCGA, 16(01):1–26, 2006.

[3] G. Brodal and R. Jacob. Dynamic planar convex hull.
In 43rd Annual IEEE Symposium on Foundations of
Computer Science, pages 617–626, 2002.

[4] F. Hurtado, M. Noy, P. A. Ramos, and C. Seara.
Separating objects in the plane by wedges and strips.
Discrete Applied Mathematics, 109(1):109–138, 2001.

[5] J. Kratochvil and J. Matousek. Intersection graphs of
segments. Journal of Combinatorial Theory, Series
B, 62(2):289–315, 1994.

[6] N. Megiddo. Linear-time algorithms for linear pro-
gramming in R3 and related problems. SIAM J. on
Comput., 12(4):759–776, 1983.

[7] V. Mäkinen, V. Staneva, A. Tomescu, D. Valenzuela,
and S. Wilzbach. Interval scheduling maximizing
minimum coverage. Discrete Applied Mathematics,
225:130–135, 2017.

[8] J. O’Rourke, S. Rao Kosaraju, and N. Megiddo. Com-
puting circular separability. Discrete & Computational
Geometry, 1:105–113, 1986.

[9] C. Seara. On geometric separability. PhD thesis,
Universitat Politènica de Catalunya, 2002.

[10] R. Tarjan. Depth-first search and linear graph algo-
rithms. SIAM J. on Comput., 1(2):146–160, 1972.

	Introduction
	Separability using four lines
	New algorithm for four line separability
	Minimizing the guard set

	Sufficient conditions for four line separability
	Finding the optimal guards
	An algorithm to find optimal guards

	The second open question

