On the number of drawings of a combinatorial triangulation

Belén Cruces Mateo ${ }^{* 1}$, Clemens Huemer ${ }^{\dagger 1}$, and Dolores Lara ${ }^{\ddagger 2}$
${ }^{1}$ Universitat Politècnica de Catalunya
${ }^{2}$ Centro de Investigación y de Estudios Avanzados

In 1962, Tutte 5 proved that the number of triangulations, that is maximal planar graphs with a fixed face with vertices a, b, and c, and n additional vertices is $\psi_{n, 0}=\frac{2}{n(n+1)}\binom{4 n+1}{n-1}=\Theta\left(\frac{1}{n^{5 / 2}} 9, \overline{481}^{n}\right)$. See [5] for a precise definition. We call these triangulations combinatorial triangulations. Note that in a combinatorial triangulation, the edges need not be straight-line segments. In contrast to combinatorial triangulations, there is no general formula for the number of geometric triangulations, which are defined for a given set S of n points in the plane. A geometric triangulation on S is a maximal planar straight-line graph with vertices the set S. Finding the maximum number $\operatorname{tr}(n)$ of geometric triangulations, among all sets S of n points in general position in the plane, is a longstanding open problem in Discrete Geometry. The current best bounds are $\Omega\left(9,08^{n}\right) \leq \operatorname{tr}(n) \leq O\left(30^{n}\right)$, [2, 3]. In 4] the question was raised if the numbers of combinatorial and geometric triangulations are somehow related? See Fig. 1 for an example that shows the three combinatorial triangulations on five vertices, but only two of them are geometric triangulations on the shown set S of five points. We study the following problem:
Question: In how many ways can a combinatorial triangulation with n vertices be drawn on a set of n points in the plane?
Note that any upper bound c^{n} on this number yields trivially an upper bound for $\operatorname{tr}(n)$ of $O\left((c \cdot 9, \overline{481})^{n}\right)$. It turns out to be very difficult to find examples of combinatorial triangulations which can be drawn in many different ways on a given point set S. A first simple bound is shown in the following:

- A triangulation formed by nested triangles The set S of n points in the plane in general position has $\frac{n}{3}$ layers of three points as in Fig. 2. The combinatorial triangulation T we consider is the one shown in this figure. We observe that each triangular layer can be rotated to produce a different geometric triangulation of S, while maintaining the combinatorial triangulation T. This yields a lower bound of

[^0]

Figure 2: A triangulation formed by nested triangles and a rotation between consecutive layers.
$\Omega\left(2^{\frac{n}{3}}\right)=\Omega\left(1,2599^{n}\right)$ different drawings of T on S.

- A triangulation on the double chain We improve upon this bound by defining another combinatorial triangulation T recursively, and show a lower bound on the number of drawings of T on the socalled double chain point configuration (1).

Theorem 1 There exists a combinatorial triangulation T and a set S of n points in the plane such that T has at least $\Omega\left(1,31^{n}\right)$ different drawings on S.

References

[1] A. García, M. Noy, J. Tejel, Lower bounds on the number of crossing-free subgraphs of K_{N}, Computational Geometry 16 (2000), 211-221.
[2] D. Rutschmann, M. Wettstein, Chains, Koch chains, and point sets with many triangulations, arXiv preprint, 2022, arXiv:2203.07584.
[3] M. Sharir, A. Sheffer, Counting triangulations of planar point sets, The Electronic Journal of Combinatorics 18 (2011).
[4] M. Sharir, E. Welzl, Random triangulations of planar point sets. Proc. of the 22nd Annual Symposium on Computational Geometry (2006) 273-281.
[5] W. T. Tutte, A census of planar triangulations, Canadian Journal of Mathematics 14 (1962), 21-38.

[^0]: *Email: belen.cruces@estudiant.upc.edu
 ${ }^{\dagger}$ Email: clemens.huemer@upc.edu. Research supported by PID2019-104129GB-I00/ MCIN/ AEI/ 10.13039/501100011033 and Gen. Cat. 2021 SGR 00266.
 \ddagger Email: dlara@cs.cinvestav.mx.

