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Preface

The XX Spanish Meeting on Computational Geometry (formerly Encuentros de Geometŕıa Computacional,
EGC 2023) was held on July 3-5 in Santiago de Compostela, Spain. This book contains the abstracts of the
invited talks, contributed papers, and contributed talks, accepted for presentation at this meeting.

This series of biennial meetings focuses on current research topics in discrete and computational geometry. Since
the seminal edition in 1990, the Encuentros have combined a strong scientific program with a friendly atmosphere.
The intended audience ranges from experienced researchers to students facing their debut in the area. The strong
collaboration links of the Spanish community with foreign colleagues made advisable, in 2011, to change the
language of the meeting to English and have the submissions peer-reviewed by an international program committee.

As in the last editions, authors were able to choose between submitting a 4-page (“paper”) or a 1-page (“talk”)
abstract. We received a total of 30 submissions, consisting of 16 talks and 14 papers. Among them, one was
rejected and the other 29 submissions were finally accepted, composing the core of this book.

The current edition of the meeting is the result of the work and dedication of a lot of people. First, our thanks
go to the authors for choosing EGC to share and disseminate their work. Secondly, we would like to thank the
members of the program committee and the external reviewers for accepting to contribute their expertise to
this meeting carefully, constructively, and on time. Thirdly, we are truly thankful to the three excellent invited
speakers for accepting our invitation: Ruy Fabila-Monroy, Christiane Schmidt, and Antonio Gómez Tato. Finally,
it is very appreciated the support of the Departamento de Matemática, Área de Xeometŕıa e Topolox́ıa da
Facultade de Matemáticas da Universidade de Santiago de Compostela (Spain).

This edition would not have been possible without the tough work of the organizing committee: Enrique
Maćıas - co-chair, David Mosquera, and Alba Sendón from the Universidade de Santiago de Compostela, David
Orden - co-chair and Guillermo Esteban from the Universidad de Alcalá, and Carlos Seara - co-chair from the
Universitat Politècnica de Catalunya. We also thank Fabian Klute from the Universitat Politècnica de Catalunya
for helping producing these proceedings.

We are very grateful for the generous support of our contributors: Universitat Politècnica de Catalunya,
BarcelonaTech (UPC), Departament de Matemàtiques (UPC), Universidad de Alcalá (UAH) and Departamento
de F́ısica y Matemáticas (UAH).

We like to express our gratitude to our appreciated colleagues who retire from academics around this edition
and who contributed so much to the Spanish community on Computational Geometry: Mercè Claverol and
Alfredo Garćıa.

During the business meeting a single bid was presented for 2025 by Francisco Santos (Universidad de Cantabria)
and, as a consequence, the XXI edition of EGC 2025 will take place in Santander (Spain). Looking forward to
seeing you all in two years in Santander!

July 2023,

Clemens Huemer, Pablo Pérez-Lantero, and Carlos Seara
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Marta Fort (Universitat de Girona)
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Planar point sets with integer grids

Ruy Fabila-Monroy1

1Cinvestav (México)

Let S be a set of n points in general position in the plane” is a mantra in Discrete and Computational Geometry.
In this talk we give an overview on various results on finite planar point sets in general position, where it is
required that the points have integer coordinates.
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k-Transmitters/k-Modems

Christiane Schmidt1

1Linköping University (Sweden)

For the classical Art Gallery problem numerous variants–varying either the capabilities of the guards or
the environment to be guarded–have been studied. One such variant was introduced in 2009 by Aichholzer et
al./Fabila-Monroy et al. (a limited version was actually already presented in 1988): k-modems or k-transmitters,
which are guards that can see through at most k walls.

In this talk, I will review some of the existing work on the problem, highlight several of the–still–open problems
and present both an inapproximability result and a polylog approximation algorithm for a mobile k-transmitter,
that is, a k-transmitter watchman.

Parts of this talk are joint work with Bengt J. Nilsson.
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Mathematics and biology in the 21st Century

Antonio Gómez Tato1

1Universidade de Santiago de Compostela (Spain)

The publication in February 2001 of the first draft of the human genome sequences marks the beginning of a
new era in biological research. In this new stage of biology, mathematics is more necessary than ever. In this
lecture I will give several examples where mathematics is proving its effectiveness in the task of understanding
cells and living organisms and will present some of the challenges in biology that mathematics can and should
contribute to solve.
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Realizations of multiassociahedra via rigidity ∗

Luis Crespo Ruiz† and Francisco Santos‡

Departamento de Matemáticas, Estad́ıstica y Computación, Universidad de Cantabria, 39005 Santander, Spain

Abstract

Let ∆k(n) denote the simplicial complex of (k + 1)-

crossing-free subsets of edges in
(
[n]
2

)
. Here k, n ∈ N

and n ≥ 2k+1. Jonsson (2005) proved that (neglecting
the short edges that cannot be part of any (k + 1)-
crossing), ∆k(n) is a shellable sphere of dimension
k(n− 2k − 1)− 1, and conjectured it to be polytopal.

Despite considerable effort, the only values of (k, n)
for which the conjecture is known to hold are n ≤ 2k+3
(Pilaud and Santos, 2012) and (2, 8) (Bokowski and Pi-
laud, 2009). Using ideas from rigidity theory we realize
∆k(n) as a polytope for (k, n) ∈ {(2, 9), (2, 10), (3, 10)}.
We also realize it as a simplicial fan for all n ≤ 13 and
arbitrary k, except the pairs (3, 12) and (3, 13).

1 The multiassociahedron

Triangulations of the convex n-gon P (n > 2) are the
facets of an abstract simplicial complex with vertex
set
(
[n]
2

)
and defined by taking as simplices all the non-

crossing sets of diagonals. This simplicial complex,
ignoring the boundary edges {i, i+ 1}, is a polytopal
sphere of dimension n− 4 dual to the associahedron.
(Here and all throughout the paper, indices for vertices
of the n-gon are regarded modulo n). A similar com-
plex can be defined if we forbid crossings of more than
a certain number k of edges (assuming n > 2k + 1),
instead of forbidding pairwise crossings.

Definition 1 Two disjoint pairs {i, j}, {k, l} ∈
(
[n]
2

)
,

with i < j and k < l, of
(
[n]
2

)
cross if i < k < j < l or

k < i < l < j. That is, if they cross as diagonals of a
convex n-gon. A k-crossing is a subset of k elements
of
(
[n]
2

)
such that every pair cross. A subset of

(
[n]
2

)
is

(k+1)-free if it doesn’t contain any (k+1)-crossing. A
k-triangulation is a maximal (k + 1)-free set. We call
∆k(n) the simplicial complex consisting of (k+1)-free
sets of diagonals, whose facets are the k-triangulations.

Diagonals of length at most k (with length measured
cyclically) cannot participate in any (k + 1)-crossing.

∗Supported by grant PID2019-106188GB-I00 funded by
MCIN/AEI/10.13039/501100011033, by FPU19/04163 of the
Spanish Government, and by project CLaPPo (21.SI03.64658)
of Univ. de Cantabria and Banco Santander.

†Email: luis.cresporuiz@unican.es.
‡Email: francisco.santos@unican.es.

Thus, it makes sense to define the reduced complex
∆k(n) obtained from ∆k(n) by deleting them. We call
∆k(n) the multiassociahedron or k-associahedron.

It was proved in [14, 9] that every k-triangulation of
the n-gon has exactly k(2n− 2k − 1) diagonals. That
is, ∆k(n) is pure of dimension k(2n − 2k − 1) − 1.
Jonsson [11] further proved that the reduced version
∆k(n) is a shellable sphere of dimension k(n − 2k −
1) − 1, and conjectured it to be the normal fan of a
polytope. See [15, 16, 19] for additional information.

Conjecture 2 ([11]) ∆k(n) is a polytopal sphere for
every n ≥ 2k+1; that is, there is a simplicial polytope
of dimension k(n− 2k − 1)− 1 with

(
n
2

)
− kn vertices

whose lattice of proper faces is isomorphic to ∆k(n).

Conjecture 2 is easy to prove for n ≤ 2k + 3 [16].
The only additional case for which Jonsson’s conjec-
ture is known to hold is k = 2 and n = 8 [2]. In
some additional cases ∆k(n) has been realized as a
complete simplicial fan, but it is open whether this
fan is polytopal. This includes the cases n ≤ 2k + 4
[1], k = 2 and n ≤ 13 [13], and k = 3 and n ≤ 11 [1].

Interest in the polytopality of ∆k(n) also comes from
cluster algebras and Coxeter combinatorics. Let w ∈
W be an element in a Coxeter group W and let Q be
a word of a certain length N . Assume that Q contains
as a subword a reduced expression for w. The subword
complex of Q and w is the simplicial complex with
vertex set [N ] and with faces the subsets of positions
that can be deleted from Q and still contain a reduced
expression for w. Knutson and Miller [12, Theorem 3.7
and Question 6.4] proved that every subword complex
is either a shellable ball or sphere, and they asked
whether all spherical subword complexes are polytopal.
It was later proved by Stump [19, Theorem 2.1] that
∆k(n) is a spherical subword complex for the Coxeter
system An−2k−1 and, moreover, it is universal : every
other spherical subword complex of type A appears
as a link in some ∆k(n) [17, Proposition 5.6]. Hence,
Conjecture 2 is equivalent to a positive answer in type
A to the question of Knutson and Miller.

2 Realizing a simplicial complex as a polytope

If ∆ is a pure simplicial complex with vertex set V of
dimension D−1 (its facets have size D) realizing it as a
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polytope is the same as finding a vector configuration
V = {vi}i∈V ⊂ RD on which ∆ yields a complete
simplicial fan, and then proving the fan to be a regular
triangulation of V. See [8, Section 9.5] for details.

To prove that an embedding is a simplicial fan we
use a version of [8, Corollary 4.5.20] which says that
in order for a vector configuration V ⊂ RD to embed
∆ as a simplicial fan the following Interior Cocircuit
Property (ICoP) is necessary and almost sufficient:

(ICoP) For every facet T of ∆ the vectors {vij : {i, j} ∈
T} are independent, and for every two adjacent
facets T1 and T2 the linear dependence among the
vectors {vij : {i, j} ∈ T1 ∪ T2} has the same sign
for the two elements in T1 \ T2 and T2 \ T1.

We apply this to the complex ∆k(n), for which

V ⊂
(
[n]
2

)
and D = k(n − 2k − 1). Each facet is a k-

triangulation and two facets are adjacent if and only if
the k-triangulations differ by a flip, defined as follows:

Proposition 3 (Flips [16, Section 5]) For every
edge f of a k-triangulation T with length greater than
k, there is a unique edge e ∈

(
[n]
2

)
such that

T△{e, f} := T \ {f} ∪ {e}

is another k-triangulation.

Once we have the complete fan, regularity is equiva-
lent to the feasibility of a system of linear inequalities.
We check this with a version of [18, Theorem 3.7],
which in turn is related to [8, Proposition 5.2.6(i)].

In some proofs we also use the following fact:

Proposition 4 (Short cycles [5, Cor. 2.9]) All
links of dimension 1 in ∆k(n) are cycles of length ≤ 5.

3 Rigidity

Let p = (p1, . . . , pn) be a set of n points in Rd, la-
belled by [n]. Their bar-and-joint rigidity matrix is
the following

(
n
2

)
× nd matrix:

R(p) :=




p1 − p2 p2 − p1 . . . 0
p1 − p3 0 . . . 0

...
...

...
p1 − pn 0 . . . pn − p1

0 p2 − p3 . . . 0
...

...
...

0 0 . . . pn − pn−1




.

The shape of the matrix is as follows: there is a row
for each pair {i, j} ∈

(
[n]
2

)
, so rows can be considered

labeled by edges in the complete graph Kn. Then,
there are n blocks of columns, one for each point pi
and with d columns in each block; in the row of an
edge {i, j} (or {j, i}) only the blocks of vertices i and

j ae nonzero, and they contain respectively the vectors
pi − pj and pj − pi. Put differently, the matrix can
be interpreted as a “directed incidence matrix” of the
complete graph Kn, except instead of having a single
+1 and −1 for each edge-vertex incidence we have
the d-dimensional vectors pi − pj and pj − pi. For an
E ⊂

(
[n]
2

)
we denote by R(p)|E the restriction of R(p)

to the rows or elements indexed by E.

Definition 5 Let E ⊂
(
[n]
2

)
be a subset of edges of

Kn (equivalently, of rows of R(p)). We say that E,
or the corresponding subgraph of Kn, is self-stress-
free or independent if the rows of R(p)|E are linearly
independent, and rigid or spanning if they are linearly
spanning (that is, they have the same rank as the
whole matrix R(p)).

That is, self-stress-free and rigid graphs are, respec-
tively, the independent and spanning sets in the linear
matroid of rows of R(p). We call this matroid the
bar-and-joint rigidity matroid of p and denote it R(p).

The number k(2n− 2k− 1) = 2kn−
(
2k+1

2

)
of edges

in a k-triangulation happens to coincide with the rank
of R(p) (or of R(p)) when p is a set of n points in
general position in R2k. This suggest to try to use
these matrices to try to embed ∆k(n) as a simplicial
fan. Or, more generally, we can use any of the following
two other versions of rigidity, based on matrices of
the same shape, size, and rank as R(p), and which
fit into the framework of abstract rigidity matroids of
dimension 2k on n elements.

• The hyperconnectivity matroid of p ⊂ Rd, denoted
H(p), is the matroid of rows of

H(p) :=




p2 −p1 0 . . . 0 0
p3 0 −p1 . . . 0 0
...

...
...

...
...

pn 0 0 . . . 0 −p1
0 p3 −p2 . . . 0 0
...

...
...

...
...

0 0 0 . . . pn −pn−1




• For points q = (q1, . . . , qn) in R2 and a parameter
d ∈ N, the d-dimensional cofactor rigidity matroid
of the points q1, . . . , qn, which we denote Cd(q),
is the matroid of rows of

Cd(q) :=




c12 −c12 0 . . . 0
c13 0 −c13 . . . 0
...

...
...

...
c1n 0 0 . . . −c1n
0 c23 −c23 . . . 0
...

...
...

...
0 0 0 . . . −cn−1,n




,
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where the vector cij ∈ Rd associated to qi =
(xi, yi) and qj = (xj , yj) is

cij =
(
(xi − xj)d−1, (yi − yj)(xi − xj)d−2,

. . . , (yi − yj)d−1
)
.

In [3] we prove that these three rigidity theories
coincide when the points p or q are chosen along the
moment curve (for bar-and-joint and hyperconnectiv-
ity) and the parabola (for cofactor). More precisely:

Theorem 6 ([3]) Let t1 < · · · < tn ∈ R be real
parameters. Let

pi = (1, ti, . . . , t
d−1
i ) ∈ Rd,

p′i = (ti, t
2
i , . . . , t

d
i ) ∈ Rd,

qi = (ti, t
2
i ) ∈ R2.

Then, the matrices H(p1, . . . , pn), R(p
′
1, . . . , p

′
n) and

C(q1, . . . , qn) can be obtained from one another mul-
tiplying on the right by a regular matrix and then
multiplying its rows by some positive scalars. In par-
ticular, the three matrices define the same oriented
matroid.

Definition 7 We call the matrix H(p1, . . . , pn) in the
statement of Theorem 6 the polynomial d-rigidity
matrix with parameters t1, . . . , tn. We denote it
Pd(t1, . . . , tn), and denote Pd(t1, . . . , tn) the corre-
sponding matroid.

Summing up: for any choice of points p ∈ R2k or
q ∈ R2 in general position, the rows of the matrices
R(p), H(p) or C2k(q) are a real vector configuration
V ⊂ R2kn of rank k(2n− 2k − 1). Moreover, if p is
chosen along the moment curve or q along the parabola
the three theories give linearly equivalent embeddings.
The question we address is whether using these vectors
as rays we get that the reduced k-associahedron ∆k(n)
is a polytopal fan.

An alternative to realize the fan is “bipartizing” the
k-triangulations, as follows:

Definition 8 The bipartization of a graph G =
([n], E) is the graph G′ = ([n] ∪ [n]′, E′) where
E′ = {(i, n+1− j) : {i, j} ∈ E, i < j}. The (reduced)
bipartization of a k-triangulation is its bipartization
restricted to [n− k − 1] ∪ [n− k − 1]′.

Reduced bipartizations of k-triangulations have
2kn− 3k2 − 2k edges, which is exactly the rank of the
hyperconnectivity matroid in dimension k restricted
to bipartite graphs. So, we can also use as a vector
configuration the rows of H(p) for p ⊂ Rk in general
position, restricted or not to the moment curve.

Conjecture 9 1. k-triangulations of the n-gon are
bases in the bar-and-joint rigidity matroid of
generic points along the moment curve in dimen-
sion 2k.

2. Bipartized k-triangulations of the n-gon are bases
in the bar-and-joint rigidity matroid of generic
points along the moment curve in dimension k.

4 Main results

First, as evidence for Conjecture 9 we prove the case
k = 2:

Theorem 10 ([5, Thm. 1.4]) 2-triangulations are
isostatic in dimension 4 for generic positions along the
moment curve.

One may be tempted to change “generic” to “arbi-
trary” in Conjecture 9, but we show that this stronger
conjecture fails in the worst possible way; for every
k ≥ 3 and n ≥ 2k + 3, the standard positions along
the moment curve make some k-triangulation not a
basis:

Theorem 11 ([5, Thm. 1.6], [6, Th. 1.13])

1. The graph K9 − {16, 37, 49} is a 3-triangulation
of the n-gon, but it is dependent in the rigidity
matroid C6 for any configuration q ⊂ R2 if the
lines through q1q6, q3q7, and q4q9 meet at a point.
This occurs, for example, if we take the nine points
on the parabola with ti = i.

2. The bipartization of the same graph is dependent
in H3 if the cross-ratio between the hyperplanes
(12, 23; 24, 25) equals (2′4′, 2′3′; 1′2′, 2′5′), as hap-
pens with points along the moment curve with
t = (1, 3, 4, 5, 7, 1, 3, 4, 5, 7).

In fact, for n ≤ 2k + 3 we can characterize exactly
what positions realize ∆k(n) as a fan, for cofactor
rigidity (and, in particular, for the other two forms of
rigidity with positions along the moment curve), and
for bipartite rigidity along the moment curve. In the
case n = 2k + 3 this is governed by the geometry of
the star-polygon formed by the k-relevant edges. More
precisely, we call “big side” of each relevant edge (that
is, edge of k+1) in a (2k+3)-gon the open half-plane
containing k + 1 vertices:

Theorem 12 ([5, Thm. 3.14], [6, Thm. 5.6])

1. For n = 2k + 2, any choice of q1, . . . , q2k+2 ∈ R2

in convex position for cofactor rigidity, and any
choice of t1 < · · · < tk+1, t

′
1 < · · · < t′k+1 in

the moment curve for bipartite rigidity, realizes
∆k(2k + 2) as a polytopal fan.

2. Let q1, q2, . . . , q2k+3 ∈ R2 be in convex position.
∆k(2k + 3) is realized by C2k(q) as a complete
fan if and only if the big sides of all relevant edges
have a non-empty intersection.
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3. Let t1 < · · · < tk+2, t
′
1 < · · · < t′k+2 be parame-

ters for the vertices of Kk+2,k+2 in the moment
curve. ∆k(2k + 3) is realized by Pk(t) as a com-
plete fan if and only if one of the following holds:

• k = 2.

• k = 3 and the cross-ratio (1, 3; 4, 5) is greater
than (4′, 3′; 1′, 5′).

• k ≥ 4 and the cross-ratio (i1, i2; i3, k + 2) is
greater than ((k + 3− i1)′, (k + 2− i2)′; (k +
3− i3)′, (k + 2)′), for any i1, i2, i3 with 2 ≤
i1 < i2 < i3 − 1 ≤ k.

Here, by cross-ratio between four points, we mean
the cross-ratio between their parameters t.

Interestingly, from parts (2) and (3) of this result it
is quite easy to show that no positions of points along
the moment curve realize ∆k(n), for several values of
k and n:

Corollary 13 ([5, Thm. 1.7], [6, Thm. 1.14])

1. If k ≥ 3, n ≥ 2k + 6 then no choice of points
q ⊂ R2 in convex position realizes ∆k(n) as a fan
via cofactor rigidity.

2. If k = 3, n ≥ 12, or k ≥ 4, n ≥ 2k + 4, then no
choice of points t ∈ R2(n−k−1) in the moment
curve realizes ∆k(n) as a fan via cofactor rigidity.

Observe that this is not a counter-example to Con-
jecture 9, which is only about linear independence of
the vectors generating each facet of the fan, not about
the fan itself.
Finally, for every n ≤ 13 we have experimen-

tally found positions along the moment curve real-
izing ∆k(n) as a fan, except in the cases (n, k) ∈
{(3, 12), (3, 13)} which are forbidden by Corollary 13.
For many of them we have also realized the polytope:

Theorem 14 ([5, Lem. 4.13 & 4.14], [6, Thm.
5.10]) Let t = {1, 2, . . . , n} be standard positions for
the parameters. Then:

1. Standard positions realize ∆2(n) as the normal
fan of a polytope for P4(t) with the original graph
if n ≤ 9, and for P2(t) with the bipartized graph
if n ≤ 8.

2. The non-standard positions t =
(−2, 1, 2, 3, 4, 5, 6, 7, 9, 20) for P4(t) with the
original graph, and the near-lexicographic
positions ti = t′i = 2(i−1)2 for P2(t) with the
bipartized graph, realize ∆2(10) as the normal
fan of a polytope.

3. Standard positions realize ∆2(n) as a complete
fan for all n ≤ 13 with both forms of rigidity.

4. Equispaced positions along the circle with the
original graph realize ∆k(n) as a fan for (k, n) ∈
{(3, 10), (3, 11), (4, 12), (4, 13)}. The first one is
polytopal.

5. The positions t = (0, 1, 31, 32, 42, 67, 100) at both
sides with bipartite rigidity realize ∆3(11) as a
fan.
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Abstract

Covering a set of segments in a plane with vehicles
of limited autonomy is a problem of practical inter-
est. The limited battery endurance imposes periodical
visits to a static base station. Typically, two optimiza-
tion problems are considered: minimize the number of
tours, and minimize the total traveled distance. In a
general setting, the problems are NP-hard and in this
letter, we study the one-dimensional version. For cov-
ering segments on a line, we design efficient solutions
for both optimization problems. First, we design a
Greedy algorithm that is optimal for the first task, and
for both tasks when only one segment is considered.
Being n and m the number of segments and tours of
an optimal solution, respectively, our algorithm runs
in O(m+ n) time. For the second criterion, our solu-
tion is based on Dynamic Programming and runs in
O(n2) +O(nm) time.

1 Introduction

Trajectory optimization through linear segments is of
practical interest in the robotics community. Road
network patrolling, anomaly detection in solar power
plants, power lines inspection and other similar in-
frastructures with unmanned vehicles are studied in
various pieces of research [2, 1, 6]. In this work, we
will use the term drone, though this research may be
applied to any agent with limited autonomy. The use
of drones or Unmanned Aerial Vehicles (UAVs), com-
monly called drones, has been proposed for the efficient
maintenance of infrastructures, in order to reduce po-
tential risks and costs for the distribution companies
[7, 3]. The battery life limit of these small-size robots
severely restricts the duration of the mission, as it
becomes impossible to complete the overall coverage
with a single tour. Therefore, considering each tour
should start and end at a base station, the problem
of minimizing the total cost of travel is hard in gen-
eral and some heuristics have been considered in the

∗Email: besp@utdallas.edu
†Email: dbanez@us.es
‡Email: akasiuk@us.es
§Email: migpercut@alum.us.es
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literature [4, 5].
Two optimization problems can be formulated when

the objects to be covered are line segments. Given a set
of line segments S with any distribution in the plane,
a depot or a base location O from where the robots
can be launched and recharged and, a real number L,
we consider:

• MinTours-problem: Finding the minimum num-
ber of tours t1, · · · , tp covering S, that is,

S ⊂
p⋃

i=1

ti.

• MinDistance-problem: Compute a set of tours
that covers S with minimum total length.

A tour t is considered to be valid if it starts and
ends at O, and the length of t is at most L. The length
of a tour is the sum of the Euclidean distance between
its consecutive vertices; the length of a set of tours is
the sum of the lengths of each of its elements. The NP-
hardness of MinTours- and MinDistance-problems
in the plane can be proved by a reduction from the
Traveling Salesman Problem (TSP). However, in this
paper we show that the one-dimensional case related
to both problems, where segments are located through
a line, can be solved in polynomial time. We consider
several scenarios, designing efficient algorithms capable
of finding the optimal solution. The paper is structured
as follows: Section 2 formally defines the considered
problems; Section 3 describes the optimal solution
to the problem of finding the minimum number of
tours; and Section 4 focuses on finding the set of tours
covering S with minimum total length. In this version,
we omit several proofs due to space restrictions.

2 Problem formulation

Let S = {s1, · · · , sn} be a set of disjoint segments
arranged on a line, O be a point on the plane corre-
sponding to a base station, and L be the maximum
distance that a drone with constant battery life can
travel. The problem is to find a set of drone routes
(tours) with lengths no greater than L starting and
ending at O so that they jointly traverse all segments
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in S with minimum total cost. Two objective func-
tions are considered: the number of tours or the total
traveled distance (sum of the lengths of the tours).
Since segments in S lie on a line, we define the

problems using the following notations. Let si =
[ai, bi], i = 1, 2, . . . , n be n disjoint intervals on the
line y = 0 such that a1 < a2 < · · · < an; a1, bn are the
edges of S. Let O = (0,−h) be the base station and
L > 0 be the maximum length of a tour using the full
battery. Formally, the problem is to compute a set of
tours T = {t1, t2, . . . , tm} covering S so that:

• 1DMinTours-problem: the number of tours m =
|T | is minimized.

• 1DMinDistance-problem:
∑m

i=1 li is minimized,
where li is the length of ti.

For simplicity, we assume that the tours of T are
given ordered, that is, from left to right or from right
to left. In addition, we consider other important nota-
tions and definitions. For an interval si = [ai, bi], we
term ai, bi as the left and right point respectively of
si. This concept is extended for any tour t: the left
point of t is the leftmost point of t that lies on the
line defined by the intervals covered by t; the right
point of t is defined analogously. If a point x ∈ si
for some si ∈ S, then we assume the relaxation of
x ∈ S. This is important to define subsets of S as
Sp,q = {x : x ∈ S, p ≤ x ≤ q}; then Tp,q is the set of
tours covering Sp,q. If p, q are the left and right points
respectively of the tour ti, then we define the portion
of S covered by ti as S

i
p,q, and S − ti as the part of S

not covered by ti. Finally, we consider that ti is a max-
imal tour if li = L, we term m as the minimal number
of tours to cover S, and T ∗ is the optimal set of tours
covering S. See Figure 1 for a visual explanation of
some of the aforementioned definitions.

O

a1 b1

ai bi
bi−1 an bn

ai−1 O′
Rp q

tj

Sj
pq

Figure 1: An example of a set S of intervals. A tour tj
(in red) is the path OpqO. The portion of S covered
by this tour is Sj

pq = [p, bi−1] ∪ [ai, q].

3 Minimizing the number of tours

In this section, we show that the 1DMinTours-problem
can be solved using the following greedy approach. For
a tour t = OpqO, let S − t be the closure of part of S
not covered by t.

Greedy Strategy (GS): Let f be the farthest
point from O in S. If S can be covered by one tour, per-
form a minimal length tour t covering S, else perform
a maximal tour t covering f and update S := S − t.

In the following, we prove that GS retrieves an
optimal solution (it is easy to see that the optimal
solution is not necessarily unique).

Theorem 1 GS computes an optimal solution for
minimizing the number of tours.

Proof. Proof by induction on m, the minimum num-
ber of tours.
Base Case: If all segments of S can be covered

with one tour, the greedy algorithm computes only
one tour using the farthest point from O.

Inductive Step: Suppose that the minimum num-
ber of tours covering a set S is at least two, i.e. m ≥ 2.
Let f ∈ S be the farthest point from O and let tf
be the maximal tour covering f . Assume w.l.o.g.
that f = bn (the proof is analogous if f = a1). Let
T ∗ = {t1, t2, . . . , tm}, tm be an optimal solution such
that the tour tm reaches f . Let S∗ be the set of points
in S covered by tours t1, t2, . . . , tm−1. Let S

′
be the

set of points in S not covered by tour tf . Since tf is
maximal, S′ ⊆ S∗. Then S′ can be covered by m− 1
tours (for example, t1, t2, . . . , tm−1). By the induction
hypothesis, the greedy algorithm covers S′ by at most
m−1 tours. Therefore the greedy algorithm computes
at most m covering tours for S. Since m is the min-
imum number of tours covering a set S, the number
of tours computed by the greedy algorithm is exactly
m. □

Theorem 2 The 1DMinTours-problem can be solved
in O(m log n) or O(m+ n), where n is the number of
segments and m is the minimal number of tours.

4 Minimizing the total distance

4.1 One segment

First, note that GS is not optimal for minimizing the
total distance, even for restricted scenarios where only
one segment is considered (i.e. n = 1). This is the
case of Figure 2, where the solution provided by GS
(shown in (a)) is worst than the solution (shown in (b)).
We extend GS to optimally solve the 1DMinDistance-
problem for only one segment.

Greedy Strategy with Projection Point
(GSP): Go to the untraveled point of S farthest from
O, and perform a maximal tour while the projection
point O′ is not reached. If possible, cover the last
part with one tour; otherwise, select the two tours
containing the projection point.
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a b
g

O

O′

(a) Greedy solution.

O

a b
O′

(b) Coming to the base on the projection point.

Figure 2: GS is not optimal to cover segment [a, b] when the optimal set of tours for minimizing the total distance
includes the projection point O′.

Theorem 3 GSP is optimal for the 1DMinDistance-
problem with only one segment.

Proof. The optimal solution for minimizing the total
distance in one segment has the particularity that the
tours that do not include O′ have to be of maximum
length. Otherwise, for a tour of non-maximum length,
we can change its returning point for a point closer
to O that is also valid but with a lower distance to
the base. On the other hand, in the optimal solution
(this is unique), the projection point O′ can be covered
by one or two tours (since points in S are covered at
a maximum of two times). GSP is optimal since it
uses the aforementioned characterizations to build the
solution. First, GSP extracts the maximum-length
tours that do not contain O′. Finally, it checks if
the rest of the segment can be covered with one tour
(optimal), or if we need two. In the second case, the
optimal partition of the segment uses the projection
point, as this is the closest distance from O to S. □

Theorem 4 1DMinDistance-problem for one segment
can be solved in O(m) where m is the number of tours
of the optimal solution.

For two o more segments, the greedy approach does
not solve the problem. The reason is that each gap
between two segments poses a decision problem: cov-
ering it with a tour of maximum length (when it is
possible) or finishing the tour at the end of a segment
and start a new tour from the next one.

4.2 Segments to one side

In this letter, we only show how to solve the scenario
where all segments are on one side of the projection
point. The general case can be solved by using an
extension of this case. Formally, we call 1DMD-one-
side-problem to the 1DMinDistance-problem, with
an additional restriction: either 0 ≤ a1 or an ≤ 0.
Without loss of generality, we consider the case where
0 ≤ a1.

Let us built a discrete set using the following ap-
proach: For every bi, we consider the set of points Ci

defined by the jumps of the greedy solution starting
at bi and continuing until a gap is reached, or all the
segments are covered (Figure 3); each Ci contains at
most m points. Let C =

⋃
Ci, i ∈ [1 . . . n], be the

set of candidate points defined with this strategy that
contains, at most, nm points.

Lemma 5 The right point q of any tour tj in the
optimal solution T ∗ satisfies q ∈ C.

Proof. Assume tm ∈ T ∗ as the last tour with the
rightmost point not in C. Let q be the right point
of tm and si = [ai, bi] the segment where q lies; then
q ∈ (ai, bi). Hence, the tour tm+1 with leftmost point
q, has a length lower than L because the rightmost
point of tm+1 is in C. As ai < q, we can increase
the length of tm+1, hence reducing the total distance.
This contradicts that T ∗ is optimal. □

Lemma 6 The left point p of any tour tj in the op-
timal solution T ∗ satisfies that p is the left point of
some interval of S, or tj is maximal.

Proof. Assume ti ∈ T ∗ as a non-maximum length
tour with the left point p ∈ (ai, bi] for some interval
in S. Then, we can increase ti by moving p left to-
wards, reducing the distance from the base station
to p. This contradicts the optimality of T ∗. Hence
tours of non-maximal length lie only at the left point
of some interval of S. □

As a consequence of Lemma 6, it is straightforward
to notice that the left point of a tour in the optimal
solution is the left point of a segment, or is in C. Using
this fact and Lemma 5, we design a polynomial algo-
rithm based on dynamic programming. Our algorithm
iterates over the sorted points of C, in ascending order.
For every point ck ∈ C, we compute the maximum-
length tour starting on it, and its associated left point
c′k. We know that either c′k ∈ C, or is the left point
of some interval of S. Let jk (j′k) be the index of the
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O

a1 b1 an bn

O′ c1

= ckbn−1= ck−1an−1

ck−2
an bn−2= ck−3

ck−4c2

= c3

Figure 3: The one side case. Construction of the candidate set C.

segment where ck (c′k) is located, and be Σ∗(ck) the
optimal cost for Sa1,ck . The formula for any ck is as

follows:

Σ∗(ck) =





len(a1, ck) if a1 = c′k
min

j′k≤j≤jk
{len(aj , ck) + Σ∗(bj−1))} if c′k /∈ C

min{L+Σ∗(c′k), min
j′k<j≤jk

{len(aj , ck) + Σ∗(bj−1)}}, otherwise,

(1)

where len(aj , ck) is the length of the tour that defines
the interval Saj ,ck ; and aj (bj) is the left (right) point
of any segment contained within the maximum-length
tour starting at ck. A maximum of n − 1 values of
aj needs to be checked for every ck; one for every
gap. We term the algorithm based on the formula 1
as DPOS (Dynamic Programming on One Side). As a
consequence of Lemmas 5 and 6, we have:

Theorem 7 DPOS is optimal for the 1DMD-one-side-
problem.

Theorem 8 The 1DMD-one-side problem can be
solved in O(n2) + O(nm), where n is the number of
segments and m is the number of tours in the optimal
solution.
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1 Introduction

The notion of visibility has been used extensively in
Computational Geometry, in the context of the art
gallery problem [13, 11]. The development of wireless
network connections has motivated the study of a new
kind of visibility, where the line of visibility can cross
k obstacles [1].

Let A be an arrangement of straight lines and seg-
ments in R2 (or planes in R3). The k-crossing visibility
on A of a point p, denoted by Vk (p,A), is the set of
points q on elements of A such that the segment pq
intersects at most k elements of A. See Figure 1.

Figure 1: The blue points and segments illustrate the
2-crossing visibility of the red point on an arrangement
of lines.

Some early works on k-crossing visibility are [12, 9,
5]. In [4] recently Bahoo et al. introduced an algo-
rithm that computes Vk (p,A) in O(kn)-time, where
A consists of the edges of a polygon.

Theorem 1 (Bahoo et al. [4]) Given a simple
polygon P with n vertices and a query point p in P ,
the region of P that is k-crossing visible from p, can
be computed in O(kn) time.

In this work we obtain another proof of Theorem 1
and we prove Theorem 2, Theorem 4, Proposition 3
and Proposition 5.

∗Email: frduquep@unal.edu.co. Research supported by the
Universidad Nacional de Colombia research, grant HERMES-
58357.

Theorem 2 Let A be an arrangement of n lines in
the plane, and let p be a query point. Then Vk (p,A)
can be computed in O(n log n+ kn) time.

Given an arrangement A of straight lines, rays and
segments in the plane (or planes in R3), the combina-
torial complexity of A, is the total number of vertices
and edges (and faces) defined by A.

Proposition 3 The maximum combinatorial com-
plexity of the k-crossing visibility on arrangements
of n straight lines in the plane is θ(kn).

Theorem 4 Let A be an arrangement of n planes in
R3, and let p be a query point. Then Vk (p,A) can be
computed in O(n log n+ k2n) expected time.

Proposition 5 The maximum combinatorial com-
plexity of the k-crossing visibility on arrangements
of n planes in R3 is θ(k2n).

Note that, by Proposition 3 and Proposition 5, The-
orem 2 and Theorem 4 are optimal for k = Ω(log n)
and k = Ω(

√
log n), respectively.

Given an arrangement A of objects in R2 (or R3),
the (≤ k)-level-region of A is the set of points in R2 (or
R3) with at most k elements of A lying above it. In the
following we denote by (≤ k)level (A), to the portion
of the elements of A that are in the (≤ k)-level-region
of A.

Let T be the transformation

T ((x, y)) = (x/y, 1/y) in the R2 case, or

T ((x, y, z)) = (x/z, y/z, 1/z) in the R3 case.

In this paper we obtain a linear time reduction, of
the problem of obtaining Vk (p,A) to the problem of
obtaining (≤ k)level (A), by applying T . This reduc-
tion can be easily adapted for obtaining k-crossing
visibilities on another arrangements whose (≤ k)-level
is known.

2 Results in R2

Let D be the set of points (x, y) ∈ R2 such that y ̸= 0.
Throughout this section, O denotes the point (0, 0) ∈
R2 and T denotes the transformation T : D → D such
that T ((x, y)) = (x/y, 1/y) .
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In this section, we prove that T determines a bridge
between k-crossing visibility and (≤ k)-levels in R2.
Then, we use this result to prove Theorem 1, Theo-
rem 2 and Proposition 3.

2.1 Properties of T
Given D ⊂ D we denote by T [D] the image of D
under T . We also denote by T [A] the set images of the
elements of A under T . In this section, we first prove
several properties of T . Then, we determine T [D]
for different instances of D. Finally, we prove that
Vk (O,A) can be obtained from (≤ k)level (T [A]).

Proposition 6 T is self-inverse.

Proof. T oT ((x, y)) = T ((x/y, 1/y)) = (x, y). □

Proposition 7 T sends straight lines to straight lines.
More precisely, if L is the straight line in D with
equation ax+ by+ c = 0 then T [L] is the straight line
in D with equation ax+ cy + b = 0.

Proof. Let L′ be the straight line with equation ax+
cy+b = 0. If (x0, y0) is in L then ax0+by0+c = 0; thus,
as ax0

y0
+c 1

y0
+b = 0, then T (x0, y0) is in L

′. Similarly,

if (x0, y0) is in L
′ then T −1 (x0, y0) = T (x0, y0) is in

L. □

Proposition 8 T preserve incidences between points
and lines. More precisely the point p is in the straight
line L if and only if T (p) is in the straight line T [L].

Proof. Let p = (x0, y0) be a point in D and let L :
ax + by + c = 0 be a straight line in D. This proof
follows from the fact that (x0, y0) satisfies ax+by+c =

0 if and only if
(

x0

y0
, 1
y0

)
satisfies T [L] : ax+ cy + b =

0. □

Given a line L in D, we denote by L+ the set of
points in L whose second coordinate is greater than
zero, and we denote by L− the set of points in L whose
second coordinate is less than zero.

Proposition 9 Let L be a straight line in D. Then
T [L+] = T [L]

+
and T [L−] = T [L]

−
. Moreover, If

p1, p2, . . . , pk are in L+ (or they are in L−) ordered
by their distance to the x-axis from the closest to the
furthest, then T (p1), T (p2), . . . , T (pk) are in T [L+]
(or they are in T [L−], respectively), ordered by their
distance to the x-axis from the furthest to the closest.

Proof. As T sends straight lines to straight lines and
it does not change the sign of the second coordinate,
then T [L+] = T [L]

+
and T [L−] = T [L]

−
. If the sec-

ond coordinates of pi and pj are yi and yj , respectively,
then the second coordinates of T (pi) and T (pj) are
1/yi and 1/yj , respectively. This proof follows from the
fact that |yi| < |yj | if and only if |1/yi| > |1/yj |. □

Let D+ denote the set of points in D whose second
coordinate is greater than zero, and let D− denote the
set of points in D whose second coordinate is less than
zero. The proofs of Proposition 10 and Proposition 11
follows from Proposition 9.

Proposition 10 Let D be a line segment contained
in a straight line L, whose endpoints are p and q.

• If both p and q are in D+ (D−), then T [D] is
the line segment contained in D+ (D−) whose
endpoints are T (p) and T (q).

• If p is in the x-axis and q is in D+ (D−), then
T [D] is the ray contained in D+ (D−), defined
by the straight line T [L] and the point T (q).

Given a D ⊂ D we denote by D the closure of D in
R2.

Proposition 11 Let D be a no horizontal ray con-
tained in a straight line L, whose endpoint is p.

• If both p and D are in D+ (D−), then T [D] is
the line segment contained in D+ (D−), whose
endpoints are T (p) and the intersection of T [L]
with the x-axis.

• If p is in the x-axis and D is in D+ (D−), then
T [D] is the ray defined by the part of the straight
line T [L] in D+ (D−).

Proposition 12 Let D be a horizontal ray contained
in a straight line L whose endpoint is p. If D is
contained in D+ (D−), then T [D] is the horizontal
ray in D+ (D−), defined by the straight line T [L] and
the point T (p). If D is contained in D+, then D and
T [D] have the same direction; in the other case, D
and T [D] have opposite direction.

Proof. If L has equation by + c = 0 then T [L] is the
horizontal line with equation cy + b = 0. □

From Proposition 7, Proposition 10, Proposition 11
and Proposition 12 we conclude that: If D is a straight
line, ray or segment contained in D+ (D−) then T [D]
is a straight line, ray or segment contained in D+

(D−).

Proposition 13 Let L be a straight line in D. Then
O ∈ L if and only if T [L] is a vertical line.

Proof. This proof follows from the fact that L has
equation ax+ by = 0 if and only if T [L] has equation
ax+ b = 0 □

Let V+
k (O,A) denote the portions of the elements

of Vk (O,A) in D+, i.e.

V+
k (O,A) =

{
D ∩ D+ : D ∈ Vk (O,A)

}
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Similarly, let V−
k (O,A) denote the portions of

Vk (O,A) in D−, i.e.

V−
k (O,A) =

{
D ∩ D− : D ∈ Vk (O,A)

}

Let (≤ k)level+ (A) denote the portion of the elements
of (≤ k)level (A) in D+, i.e.

(≤ k)level+ (A) =
{
D ∩ D+ : D ∈ (≤ k)level (A)

}

The (≤ k)-lower-level-region of A is the set of points
in R2 (R3) with at most k elements of A lying below it.
Let (≤ k)level− (A) denote the portion of the elements
of A in both D− and the (≤ k)-lower-level-region of
A.

Lemma 14 Let A be an arrangement of straight lines,
segments or rays. Then:

1. V+
k (O,A) = T [(≤ k)level+ (T [A])].

2. V−
k (O,A) = T [(≤ k)level− (T [A])].

Proof. We prove 1, the proof of 2 is similar.
Let p ∈ D+ be such that p ∈ D for some D ∈ A,

and let L be the line that contains p and O. Then
p ∈ L+, T [D] ∈ T [A] and T (p) ∈ T [D]. As T pre-
serves incidences, by Proposition 13 and Proposition 9,
the line segment between O and p crosses at most
k elements of A, if and only if, there are at most k
elements of T [A] laying above T (p). □

2.2 Proofs of results in R2

Theorem 15 (Everett et al. [10]) Let A be an ar-
rangement of n lines in the plane. Then (≤ k)level (A)
can be computed in O(n log n+ kn) time.

We use Theorem 15 in order to prove Theorem 2.

Proof. [Proof of Theorem 2] Without loss of general-
ity, we may assume that p is at the origin, otherwise p
and the elements of A can be translated. We also may
assume that the x-axis does not contain an element
of A or an intersection between two elements of A,
otherwise, the elements of A can be rotated.
By Proposition 7, T [A] is an arrangement of n

straight lines. Thus, as the k-crossing visibility of O
on A can be obtained from V+

k (O,A) and V−
k (O,A),

this proof follows from Lemma 14 and Theorem 15. □

Let A be an arrangement of straight lines, rays and
segments. The vertical decomposition (also known
as trapezoidal decomposition) of A is obtained by
erecting vertical segments upwards and downwards
from each vertex in A and extend them until they
meet another line or all the way to infinity.

Lemma 16 Let A be an arrangement of n straight
lines, rays and segments. Then (≤ k)level (A) can be
obtained from a vertical decomposition of A in O(kn)
time.

Proof. Suppose that the vertical decomposition of
A is known. Then for each vertex, extend a vertical
segment upwards until it reaches k + 1 elements of A
or its way to infinity; such vertex is in (≤ k)level (A)
if and only if the vertical segment reaches its way to
infinity. □

Proof. [Another proof of Theorem 1] As in the proof
of Theorem 2, we may assume that p is at the ori-
gin and the x-axis does not contain edges of P . By
Proposition 10, T [P ] is an arrangement of at most
2n line segments or rays. Thus, as the k-crossing visi-
bility of O on P can be obtained from V+

k (O,P ) and
V−
k (O,P ), by Lemma 14 and Lemma 16, it is enough

to obtain the vertical decomposition of T [P ]∩D+ and
T [P ] ∩ D− in linear time; we do this for T [P ] ∩ D+,
the other case is similar.
Let L : y + c = 0 be a horizontal line, high enough

that all the endpoints of T [P ] ∩ D+ are below L. Let
L′ = T [L] and note that L′ is a horizontal line with
equation cy + 1 = 0. Suppose that the points in P
above L′ are blue and the others are red. Let P ′ be the
polygon in D+ obtained from P by scaling vertically
its red part, keeping the endpoints on L′ fixed.

In [7] Chazelle prove that the vertical decomposition
of a polygon can be computed in linear time (see
also Amato et al. [3]). Thus, as P ′ is contained in
D+, by Proposition 10 T [P ′] is a polygon, and the
vertical decomposition of T [P ′] can be computed in
linear time. Note that a point T (q) in T [P ] ∩ D+ is
below L if and only if q is blue. Thus the vertical
decomposition of T [P ]∩D+ can be obtained from the
vertical decomposition of T [P ′] below L. □

Proof. [Proof of Proposition 3] In [2] Alon et al.
prove that the maximum combinatorial complexity
of the (≤ k)-level on arrangements of n straight lines
in the plane is θ(nk). Without loss of generality, sup-
pose that the arrangement A reaches this bound and
the (≤ k)-level of A is contained in D+. Thus, the
combinatorial complexity of (≤ k)level+ (A) is θ(nk)
and by Lemma 14 the combinatorial complexity of
V+
k (O, T [A]) is also θ(nk). □

3 Results in R3

Let D be the set of points (x, y, z) ∈ R3 such that
z ̸= 0. Throughout this section, O denotes the point
(0, 0, 0) ∈ R3 and T denotes the transformation T :
D → D be such that

T ((x, y, z)) = (x/z, y/z, 1/z) .

The proofs of Proposition 17, Proposition 18, Proposi-
tion 19, Proposition 20, Proposition 21 and Lemma 22,
can be obtained as in Section 2.

Proposition 17 T is self-inverse.
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Proposition 18 T sends planes to planes. More pre-
cisely, if π is the plane in D with equation ax+ by +
cz + d = 0 then T [π] is the plane in D with equation
ax+ by + dz + c = 0.

Proposition 19 T preserve incidences between
points and planes. More precisely the point p is in the
plane π if and only if T (p) is in the plane T [π].

Given a plane π in D, we denote by π+ the set of
points in π whose third coordinate is greater than zero,
and we denote by π− the set of points in π whose third
coordinate is less than zero.

Proposition 20 Let π be a plane in D. Then
T [π+] = T [π]

+
and T [π−] = T [π]

−
. Moreover, If

p1, p2, . . . , pk are in π+ (or they are in π−) ordered
by their distance to the plane z = 0 from the closest
to the furthest, then T (p1), T (p2), . . . , T (pk) are in
T [π+] (or they are in T [π−], respectively), ordered
by their distance to the plane z = 0 from the furthest
to the closest.

Given a D ⊂ D we denote by D the closure of D in
R3.

Proposition 21 Let L be a straight line in D. Then
O ∈ L if and only if T [L] is a vertical line.

Lemma 22 Let A be an arrangement of planes.
Then:

1. V+
k (O,A) = T [(≤ k)level+ (T [A])].

2. V−
k (O,A) = T [(≤ k)level− (T [A])].

The proofs of Theorem 4 and Proposition 5 follows
from Theorem 23 and Theorem 24, in a similar way
as in the proof of Theorem 2 and the proof of Propo-
sition 3 in Section 2.

Theorem 23 (Chan [6]) Let A be an arrangement
of n planes in R3. Then (≤ k)level (A) can be com-
puted in O(n log n+ k2n) expected time.

Theorem 24 (Clarkson et al. [8]) Let k ≥ 1.
Then the maximum combinatorial complexity of (≤ k)-
level on arrangements of n hyperplanes in Rd is
θ
(
n⌊d/2⌋k⌈d/2⌉

)
.
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small semispaces of a finite set of points in the
plane. Journal of Combinatorial Theory, Series
A, 41(1):154–157, 1986.

[3] Nancy M Amato, Michael T Goodrich, and
Edgar A Ramos. A randomized algorithm for
triangulating a simple polygon in linear time. Dis-
crete & Computational Geometry, 26(2):245–265,
2001.

[4] Yeganeh Bahoo, Prosenjit Bose, Stephane
Durocher, and Thomas Shermer. Computing the
k-crossing visibility region of a point in a poly-
gon. In Charles J. Colbourn, Roberto Grossi, and
Nadia Pisanti, editors, Combinatorial Algorithms,
pages 10–21, Cham, 2019. Springer International
Publishing.

[5] Antonio Bajuelos, Santiago Canales, Gregorio
Hernández, and Mafalda Martins. A hybrid meta-
heuristic strategy for covering with wireless de-
vices. J. Univers. Comput. Sci., 18(14):1906–1932,
2012.

[6] Timothy Chan. Random sampling, halfspace
range reporting, and construction of (≤ k)-levels
in three dimensions. SIAM Journal on Computing,
30(2):561–575, 2000.

[7] Bernard Chazelle. Triangulating a simple poly-
gon in linear time. Discrete & Computational
Geometry, 6(3):485–524, 1991.

[8] Kenneth Clarkson and Peter Shor. Applications
of random sampling in computational geometry,
ii. Discrete & Computational Geometry, 4(5):387–
421, 1989.

[9] James Dean, Andrzej Lingas, and Jörg-Rüdiger
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Abstract

Increasing the efficiency in green energy production is
mandatory to reduce dependency on fossil fuels. Cap-
turing and storing solar energy is an appealing alterna-
tive, but optimizing energy collection with no damage
to components of solar plants is a complex problem.
In this work, some geometric optimization problems
for solar tracking in Concentrated Solar Power plants
based on Parabolic Through Collectors are addressed.
Using nice properties of a solution, we propose efficient
algorithms for optimal scheduling in solar tracking
tasks that can be adapted for other solar plants.

1 Introduction

Concentrated Solar Power (CSP) plants are an effective
alternative to photovoltaic technologies, as it has the
capacity of storing the energy captured from the sun.
Parabolic Trough Collectors (PTC) systems are one
of the most widespread CSP plants around the globe,
including more than 40 plants in Spain alone. PTC
systems are composed of a parabolic-shaped surface
reflecting the sun rays to a Heat Collector Element
(HCE) located at the focus of the parabola. The
parabolic-shaped mirror surface together with three
HCEs forms a Solar Collector Element (SCE), and 4
SCEs are a Solar Collector Assembly (SCA). For a full
decomposition of elements in the solar field of PTC
plants, the reader is referred to [1].

During normal operation of PTC plants, SCAs are
instructed to follow the sun so that the maximum en-
ergy can be collected, see Figure 1. Providing tracking
systems to simultaneously improve accuracy and re-
duce operational cost is a seminal research area in solar
plants. Methods for optimizing trackers in plants with
arbitrary design and geometry have been proposed
in the area of renewable energy [4, 2, 3]. When the
operating conditions are optimal, a perfect tracking of
the sun results in maximal energy collection.

Considering this scenario, the ray incidence over the
HCE for different SCA and solar angles is expected to

∗Email: dbanez@us.es
†Email: jhiges@us.es
‡Email: m.perez@virtualmech.com
§Email: jvalverde@us.es

be unimodal. However, the shape of the function can
change due to several errors, such as installation errors
of some components of the SCA, cracks/dirt in the
mirror surface, HCE bending and vertical/horizontal
displacements due to mechanical stress, among others.
This work raises some geometric problems to optimize
the tracking system considering any shape for the ray
incidence function. To the best of our knowledge, we
are the first considering the optimization of the solar
tracking while reducing the movements of the SCA in
a PTC plant.

The rest of the paper is organized as follows: Section
2 provides the necessary background and the defini-
tion of the optimization problems; the algorithms are
outlined in Sections 3 and 4.

2 Preliminaries

For this initial study, we assume that the weather
conditions are constant throughout the day. Thus,
solar irradiance over the HCE can be expressed as
a function z = f(x, y), where the (x, y) coordinates
represent the Solar Collector Assembly and the sun an-
gular displacements, respectively, while z corresponds
to the number of rays touching the HCE. Since there
is no change in the initial conditions, the 3D surface
corresponding to f can be interpreted as a shifted 2D
curve as illustrated in Figure 2. This visualization
allow us to redefine the function as z = f(θ), where θ
represents the difference between the sun and the SCA
angular position. Solar tracking is discrete in PTC
plants; hence, f can be defined as a step function with
n steps as follows:

f(θ) =

n∑

i=1

αiδSi(θ), (1)

where αi is the number of rays touching the HCE in
the step Si ∈ f , and δSi is a binary function indicating
if θ ∈ Si.

Using a ray-tracing software, f can be obtained by
moving the sun in a fixed axis with the SCA at 90º.
The events at which the sun rays start/end intersecting
the HCE can occur at any angular difference between
the sun and the SCA position; hence, the length of
the steps in f can be a real number. However, in this
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Figure 1: Solar tracking example in a real PTC plant.

Figure 2: Ray incidence over the HCE depending on
the angular position of the sun and the SCA for a
simple case, assuming that the SCE has a perfect
parabolic shape.

abstract we consider the case in which these numbers
are approximated as rational numbers (e.g., accurate
to within one thousandth of a unit). This is standard
in real-world applications, and involves the computa-
tional representation of real numbers. In the rational
case, the problem can be reduced to one in which the
solar irradiance function has steps with integer length.

2.1 The problems

Let f :IR→ IN be a step function with n steps, defined
as in equation 1. Let S = {S1, · · · , Sn} be the set of
steps of f . The elements of S are disjoint, ordered by
x, and there is no gap between consecutive elements. A
step Si ∈ S is an interval of the form [θi1 , θi2), where
θi1 , θi2 are the edges of the step; let E be the set
containing all the edges of S. The ray incidence over
a step Si is defined by αSi , its length as lSi ∈ IN, and
the associated gain as gSi = αSi lSi . For convenience,
if θ ∈ Si, then θ ∈ S, αθ = αSi

, and Sl
θ (Sr

θ ) is the
portion of Si from its left (right) edge to θ. In addition,
for a tracking interval t = (θi, θj) s.t. θi ∈ Si, θj ∈ Sj ,
and i ≤ j, the length of t is lt = θj − θi, and its total
gain can be defined by:

gt =




gSr

θi
+ gSl

θj

+
∑j−1

k=i+1 gSk
j > i

gSr
θi
− gSr

θj
i = j

(2)

Figure 3: Main elements defining the ray incidence
function f . t is a tracking interval from θ1 to θ2. Total
irradiance in t (gt) is the area within t below the curve.
We consider f shifted to the range (0, ω∗).

For a multiset T = {t1, . . . , tk} the total solar irra-
diance (gain) of the set is IT =

∑
gti , and the total

length is defined as LT =
∑
lti . Finally, ω∗ is the

total length of S, and the initial position of the SCA
w.r.t the sun is θ0. See Figure 3 for an overview of the
described notations.

We formulate two optimization problems of particu-
lar interest for solar tracking in CSP plants. The first
problem looks for the minimum number of movements
of the SCA such that the solar irradiance intersecting
the HCE at any moment is preserved within a given
range. The second one addresses to optimize the total
solar irradiance intersecting the HCE with a limited
number of allowed movements. More formally:

Problem 1 (Min-Tracking, or MT-Problem): Given
a step function f defined on [0, ω∗], and two real num-
bers u1, u2, find a set of intervals T ∗ = {t1, . . . , tm} of
minimum size s.t. ti ⊆ [0, ω∗], ∀θ ∈ ti, u1 ≤ αθ ≤ u2
and LT∗ + θ0 = ω∗.

Problem 2 (Maximal Energy Collection, or MEC-
Problem): Given a step function f defined on [0, ω∗]
and m ∈ IN, find a set of intervals T ∗ = {t1, . . . , tj} s.t.
ti ⊆ [0, ω∗], |T ∗| ≤ m, LT∗ ≤ ω∗, and IT∗ is maximal.
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3 Minimum Tracking

The analysis of Problem 1 must consider the initial
position of the SCA with respect to the sun position.
Two cases are possible: the SCA is in a feasible con-
figuration, i.e. u1 ≤ αθ0 ≤ u2; or the SCA is violating
this restriction. In the former, it can be readily no-
ticed that the optimal solution is to wait while the sun
moves until a non-feasible state is reached. Therefore,
we can assume, without lost of generality, that the
SCA starts from a non-feasible configuration.

Theorem 1 Let t∗ = (θi, θj) be a maximum tracking
interval in f such that for any θ ∈ t∗, u1 ≤ αθ ≤ u2.
If the SCA initially violates the boundary conditions,
then the minimum possible cardinality of a solution
that satisfies conditions of Problem 1 is ⌈ω∗−θ0

lt∗
⌉ .

Proof. Since the SCA violates the boundary condi-
tion, it needs to be moved to a feasible configuration.
Let us assume that such feasible configuration initiates
at θi and when the sun reaches θj the SCA moves again
to θi. In such case it is clear that the SCA has rotated
⌈ω∗−θ0

lt∗
⌉ times. Hence T ∗ = {t∗, . . . , t∗, t̂} with the

size of T ∗ equals m and t̂ ⊆ t∗ is a feasible solution of
Problem 1. Moreover, T ∗ is of miniminum size because
LT∗ = ω∗ − θ0. Otherwise, if T = {t1, . . . , tn} is a
feasible solution with n < m, then there would exist
a ti whose length is larger than the length of t∗, this
contradicts the maximality of t∗. □

Corollary 2 The MT-Problem can be solved in O(n+
m) time, where n is the number of steps in f and m
is the size of a solution.

Proof. The proof of Theorem 1 provides an additional
insight on the optimal value when the SCA starts from
a feasible configuration. If l0 is the length of the inter-
val in which the SCA meets the problem restrictions
from the begining, then the minimum number of ro-
tations of the SCA is m = ⌈ω∗−θ0−l0

lt∗
⌉. Finally, since

the maximal interval t∗ can be computed in linear
time with a sweep from left to right, a greedy algo-
rithm computes the optimal solution T ∗ in O(n+m)
time. □

4 Maximal energy collection

We say that a solar irradiance function f is unimodal
if, for exactly one i ∈ {1, . . . , n}, αj ≤ αj+1 ∀j < i
and αj ≥ αj+1 ∀j ≥ i. Likewise, f is multimodal or
k-modal if it has k local maxima. The unimodal case
can be solved using a greedy approach. The main
ideas are the following.
Given a real number l, let Gl be the maximum

gain with respect to f of an interval of length l. By
simplicity, we refer to Gl as the maximum gain of

length l. Notice that when f is unimodal, any interval
of maximum gain of length l contains intervals of
maximum gain for lengths lower than l. Hence, given
l1, l2 ∈ IR with l1 ≤ l2 ≤ ω∗, it can always be found
t1 and t2 of lengths lt1 = l1 and lt2 = l2 of maximum
gain in f for l1, l2, respectively, such that t1 ⊆ t2.

Theorem 3 Let l = ω∗

m and t be a subinterval of
[0, ω∗] s.t. lt = l and gt = Gl. Then T ∗ = {t, ..., t}
with |T ∗| = m is optimal for MEC problem when f is
unimodal.

Corollary 4 The MEC-Problem can be solved in
O(n+m) time when f is unimodal.

When f is k-modal (k > 1), it is easy to find an
example for which the MEC problem cannot be solved
with the same greedy algorithm. Let us introduce
some concepts to be used in the proposed solution.
Recall that E is defined as the set of edges of f .

Definition 5 An interval t = (θ1, θ2) is discrete,
called as a d-interval, if θ1 ∈ E and θ2 ∈ E. The
interval is semi-discrete if it starts or ends in an edge
of f .

Definition 6 We say that a step of f is modal (m-
step) if it is a local maximum.

Definition 7 An interval t = (θ1, θ2) is an md-
interval, if it is discrete and contains at least a modal
step of f . A semimd-interval is a semi-discrete interval
containing at least a modal step of f .

The following results constitute the heart of our
approach.

Lemma 8 There exists an optimal solution T ∗ to
the MEC problem s.t. for any t ∈ T ∗, t is at least
semi-discrete.

Lemma 9 There exists an optimal solution T ∗, to the
MEC problem s.t. ∀i = 1 . . . |T ∗| − 1, ti is a discrete
interval.

Theorem 10 There exist an optimal solution T ∗ to
the MEC problem s.t. ∀i = 1 . . . |T ∗| − 1, ti is an
md-interval, and tm is a semi md-interval.

4.1 The algorithm

The following property of any optimal solution T ∗ can
be easily proved: removing any interval ti from T ∗

yields a solution T ′ = T ∗ − {ti} that is optimal for
m − 1 moves and ω∗ − lti total displacement of the
SCA. This property, known as optimal substructure
property, allows us to find an optimal solution by
solving a collection of subproblems and it is the base of
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the greedy and dynamic programming paradigms. In
addition, and more importantly, according to Theorem
10, the general form of the optimal solution to the MEC
problem can be expressed as:

I∗m = Dl
m−1 +Gω∗−l, (3)

being I∗m the maximum gain associated to m moves,
Dl

m−1 the maximum gain for length at most l using
m − 1 discrete intervals, and Gω∗−l the maximum
gain in f for the remaining length. Because of the
optimal substructure of the problem, Dl

m−1 is optimal
for length l. However, we cannot know beforehand the
value of l, hence we divide the problem in two tasks:

Task 1: Computing Dl
m−1, ∀l ∈ (0, ω∗).

Task 2: Computing Gl, ∀l ∈ (0, ω∗).

According to (3), a solution with length l for the first
task is associated to a solution with length ω∗ − l′
in the second, where l′ ≤ l is the total length of the
intervals obtained during the computation of Dl

m−1.
In addition, notice that l ∈ IN because the length of
the steps of f are integers. Therefore, the following
remarks can be stated:

Remark 1 Combining the solutions from Task 1 and
Task 2 takes O(ω∗).

Remark 2 I∗m is the maximum value obtained after
combining the solutions from Task 1 and Task 2.

Task 2 can be easily solved in linear time for a given
l and we have:

Theorem 11 Task 2 can be solved in O(nω∗) time.

We now focus on solving Task 1. Since the con-
sidered intervals are discrete, we design an efficient
algorithm based on Dynamic Programming (DP). Our
algorithm will solve the MEC problem for any length
considering onlymd-intervals, which is the requirement
for Task 1. For simplicity, we refer to this version as
the MEC-d problem.

Let B be the set containing themd-intervals of f . In
addition, let us consider the table D[i, j, l] indicating
the maximum gain for the MEC-d problem when using
up to interval i of B, with j movements and l as
maximum solar displacement. Notice that intervals
in B do not need to be sorted, but we assume a fixed
order during the execution of the algorithm. Then,
the update rule for D can be expressed as:

D[i, j, l] =





0 (a) 0 ∈ {i, j, l}
D[i− 1, j, l] (b) l < li

max(D[i− 1, j, l], (c) else

gi +D[i, j − 1, l − li])
(4)

where gi represents the gain of the interval i of B.

Theorem 12 DP is optimal for the MEC-d problem
and spends O(n2mω∗) time.

Remark 3 For a given l ∈ (0, ω∗), D[|B|,m − 1, l]
contains the optimal value for Task 1.

The intervals corresponding to an optimal solution
T ∗ to the MEC problem can be obtained after com-
puting I∗m. Notice that every decision is associated to
an interval, both in Task 1 and Task 2; see Theorems
11 and 12. In Taks 2, the interval associated to Gl

(for a given value of l) can be obtained by scanning
f . On the other hand, for Task 1, it is easier to use
the cases defining equation 4 to retrieve the intervals
associated to a decision. Specifically, for any i, j, l, we
check (a), (b) or (c); if cases (a) or (b) holds, then the
candidate i is not used; if c holds, then we check the
equality D[i, j, l] = D[i − 1, j, l] and if it holds, then
candidate i is not used, otherwise, it is used. Starting
this process at D[|B|,m− 1, l], being l the length of
the optimal solution, it is possible to retrieve the full
set of intervals in T ∗.

Corollary 13 The MEC problem can be solved in
O(n2mω∗).

Acknowledgments

This work is partially supported by grants PID2020-
114154RB-I00, TED2021-129182B-I00 and DIN2020-
011317 funded by MCIN/AEI/10.13039/501100011033
and the European Union NextGenerationEU/PRTR.

References

[1] Lourdes A Barcia, Rogelio Peón Menéndez, Juan Á
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Abstract

Let R and B be two disjoint point sets in the plane
with |R| = |B| = n. LetM = {(ri, bi), i = 1, 2, . . . , n}
be a perfect matching that matches points of R with
points of B and maximizes

∑n
i=1 ‖ri − bi‖, the total

Euclidean distance of the matched pairs. In this paper,
we prove that there exists a point o of the plane (the
center ofM) such that ‖ri−o‖+‖bi−o‖ ≤

√
2 ‖ri−bi‖

for all i ∈ {1, 2, . . . , n}.

1 Introduction

Let R and B be two disjoint point sets in the plane
with |R| = |B| = n, n ≥ 1. The points in R are red,
and those in B are blue. A matching of R ∪ B is a
partition of R ∪ B into n pairs such that each pair
consists of a red and a blue point. A point p ∈ R
and a point q ∈ B are matched if and only if the
(unordered) pair (p, q) is in the matching. For every
p, q ∈ R2, we use pq to denote the segment connecting
p and q, and ‖p − q‖ to denote its length, which is
the Euclidean norm of the vector p − q. Let B(pq)
denote the disk with diameter equal to ‖p− q‖, that
is centered at the midpoint p+q

2 of the segment pq.
For any matching M, we use BM to denote the set
of the disks associated with the matching, that is,
BM = {B(pq) : (p, q) ∈M}.

In this note, we consider the max-sum matchingM,
as the matching that maximizes the total Euclidean
distance of the matched points. As our main result,
we prove the following theorem:

Theorem 1 There exists a point o of the plane such
that for all i ∈ {1, 2, . . . , n} we have:

‖ri − o‖+ ‖bi − o‖ ≤
√

2 ‖ri − bi‖.

Fingerhut (see Eppstein [3]), motivated by a problem
in designing communication networks (see Fingerhut
et al. [4]), conjectured that given a set P of 2n un-
colored points in the plane and a max-sum matching
{(ai, bi), i = 1, . . . , n} of P , there exists a point o of

∗Email: pablo.perez.l@usach.cl
†Email: carlos.seara@upc.edu

the plane, not necessarily a point of P , such that

‖ai−o‖+‖bi−o‖ ≤
2√
3
‖ai−bi‖ for all i ∈ {1, . . . , n},

(1)
where 2/

√
3 ≈ 1.1547.

Bereg et al. [2] obtained an approximation to this
conjecture. They proved that for any point set P of 2n
uncolored points in the plane and a max-sum matching
M = {(ai, bi), i = 1, . . . , n} of P , all disks in BM have
a common intersection, implying that any point o in
the common intersection satisfies

‖ai − o‖+ ‖bi − o‖ ≤
√

2 ‖ai − bi‖,

where
√

2 ≈ 1.4142.
Recently, Barabanshchikova and Polyanskii [1] con-

firmed the conjecture of Fingerhut.
The statement of Equation (1) is equivalent to stat-

ing that the intersection E(a1b1) ∩ E(a2b2) ∩ · · · ∩
E(anbn) is not empty, where E(pq) is the region of
the plane bounded by the ellipse with foci p and q,
and major axis length (2/

√
3) ‖p− q‖ (see [3]).

In our context of bichromatic point sets, given p ∈ R
and q ∈ B, let E(pq) denote the region bounded by
the ellipse with foci p and q, and major axis length√

2 ‖p− q‖. That is, E(pq) = {x ∈ R2 : ‖p−x‖+ ‖q−
x‖ ≤

√
2 ‖p− q‖}. Then, the statement of Theorem 1

is equivalent to stating that the intersection E(r1b1) ∩
E(r2b2)∩ · · · ∩ E(rnbn) is not empty, for any max-sum
matching {(ri, bi), i = 1, 2, . . . , n} of R ∪B.

We note that the factor
√

2 is tight. It suffices to
consider two red points and two blue points as vertices
of a square, so that each diagonal has vertices of the
same color. The center of the square is the only point
in common of the two ellipses induced by any max-sum
matching.

Hence, to prove Theorem 1 it suffices to consider
n ≤ 3, by Helly’s Theorem. Let X1, X2, . . . , Xn be a
collection of n convex subsets of Rd, with n ≥ d+ 1.
Helly’s Theorem [5] asserts that if the intersection of
every d + 1 of these subsets is nonempty, then the
whole collection has a nonempty intersection. That is
why we prove our claim only for n ≤ 3, since we are
considering n ellipses in R2. The arguments that we
give in this paper are a simplification and adaptation of
the arguments of Barabanshchikova and Polyanskii [1].
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Huemer et al. [6] proved that if M′ is any perfect
matching of R and B that maximizes the total squared
Euclidean distance of the matched points, i.e., it maxi-
mizes

∑
(p,q)∈M′ ‖p−q‖2, then all disks of BM′ have a

point in common. With different techniques, the result
of Huemer et al. was extended to higher dimensions by
Pirahmad et al. [7]. As proved by Bereg et al. [2], the
disks of our max-sum matching M of R ∪B intersect
pairwise, a fact that will be used in this paper, but
the common intersection is not always possible.

2 Proof of main result

Let R and B be two disjoint point sets defined as
above, where |R| = |B| = n, n ≤ 3, and let M be a
max-sum matching of R ∪B. Note that for every pair
(p, q) ∈ M the disk B(pq) is inscribed in the ellipse
E(pq) (see Figure 1a), which implies B(pq) ⊂ E(pq).
Then, for n = 2 Theorem 1 is true because the disks
of M intersect pairwise [2, Proposition 2.1]. Trivially,
the theorem is also true for n = 1. Therefore, we
will prove in the rest of the paper that the theorem
is also true for n = 3, which will require elaborated
arguments.

Let n = 3, with R = {a, b, c} and B = {a′, b′, c′},
and let M = {(a, a′), (b, b′), (c, c′)} be a max-sum
matching of R ∪B.

For two points p, q ∈ R2, let r(pq) denote the ray
with apex p that goes through q, and for a real number
λ ≥ 1, let Eλ(pq) be the region bounded by the ellipse
with foci p and q and major axis length λ‖p − q‖.
That is, Eλ(pq) = {x ∈ R2 : ‖p − x‖ + ‖q − x‖ ≤
λ‖p− q‖}. Note that in our context E(pq) = E√2(pq),
and Eλ(pq) ⊂ Eλ′(pq) for any λ′ > λ.

Assume by contradiction that E(aa′) ∩ E(bb′) ∩
E(cc′) = ∅. Then, we can “inflate uniformly” E(aa′),
E(bb′), and E(cc′) until they have a common intersec-
tion. Formally, we can take the minimum λ >

√
2 such

that Eλ(aa′) ∩ Eλ(bb′) ∩ Eλ(cc′) is not empty, which
means that Eλ(aa′)∩Eλ(bb′)∩Eλ(cc′) is singleton. Let
o denote the point of Eλ(aa′) ∩ Eλ(bb′) ∩ Eλ(cc′).

Let `(aa′) denote the ray with apex o that bisects
r(oa) and r(oa′). Similarly, we define `(bb′) and `(cc′).
Let t(aa′) denote the line through o tangent to Eλ(aa′),
oriented so that Eλ(aa′) is to its right. Similarly, we
define t(bb′) and t(cc′). It is well known that given an
ellipse with foci p and q, and a line tangent at it at some
point o, the rays r(op) and r(oq) form equal angles
with the tangent line (see Figure 1b). This implies
that rays `(aa′), `(bb′), and `(cc′) are perpendicular to
the tangent lines t(aa′), t(bb′), and t(cc′), respectively.
In other words, they are contained respectively in the
normal lines at point o.

Since E(aa′), E(bb′), and E(cc′) intersect pairwise
(and also none of them is contained inside other one),
we have that o belongs to the boundary of each of
Eλ(aa′), Eλ(bb′), and Eλ(cc′). Then, Eλ(aa′), Eλ(bb′),

p q

(a)

p q

o

(b)

t(aa′)

t(bb′)

t(cc′)

Eλ(aa′)

Eλ(bb′)

Eλ(cc′)

o

`(aa′)

`(bb′)

`(cc′)

(c)

Figure 1: (a) The ellipse E(pq) and the disk B(pq). (b)
A line tangent to an ellipse forms equal angles with the
rays, whose apex is the tangency point, that go through
the foci. (c) Point o and the three ellipses.

and Eλ(cc′) intersect pairwise, and each pairwise in-
tersection contains interior points. This implies that
no two lines of t(aa′), t(bb′), and t(cc′) coincide. Fur-
thermore, the six directions (positive and negative)
of t(aa′), t(bb′), and t(cc′) alternate around o, which
implies that any two consecutive rays among `(aa′),
`(bb′), and `(cc′) counterclockwise around o, have ro-
tation angle strictly less than π (see Figure 1c).

Let G = (R ∪ B,E) be the bipartite graph such
that (p, q) ∈ E if and only if p ∈ R, q ∈ B, and
either (p, q) ∈ {(a, a′), (b, b′), (c, c′)} or o ∈ B(pq). We
color the edges into two colors: We say that edge
(p, q) is black if (p, q) is an edge of the matching, that
is, (p, q) ∈ {(a, a′), (b, b′), (c, c′)}. Otherwise, we say
that (p, q) is white. Note that this color classification
is consistent, since we have that o /∈ B(pq) for all
edges (p, q) ∈ {(a, a′), (b, b′), (c, c′)} because B(pq) is
contained in the interior of Eλ(pq) and o is in the
boundary of Eλ(pq).

The proof of the next lemma is included for com-
pleteness.

Lemma 2 ([1]) IfG has a cycle whose edges are color
alternating, then M is not a max-sum matching of
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R ∪B.

Proof. For a black edge (p, q) we have that ‖p −
o‖ + ‖q − o‖ = λ‖p − q‖. For a white edge (p, q) we
have that ‖p − o‖ + ‖q − o‖ < λ‖p − q‖, since o ∈
B(pq) and B(pq) is contained in the interior of Eλ(pq).
Let (r1, b1, r2, b2, . . . , rm, bm, rm+1 = r1) be a cycle of
length m, where r1, . . . , rm ∈ R and b1, . . . , bm ∈ B,
and its edges are color alternating. Suppose w.l.o.g.
that the edge (r1, b1) is black, which means that the
edges (r1, b1), . . . , (rm, bm) ∈ M are all black, and
the edges (b1, r2), . . . , (bm, rm+1) ∈ M are all white.
Then, we have that:

m∑

i=1

‖ri − bi‖ =
1

λ

m∑

i=1

(‖ri − o‖+ ‖bi − o‖)

=
1

λ

m∑

i=1

(‖bi − o‖+ ‖ri+1 − o‖)

<
m∑

i=1

‖bi − ri+1‖.

Hence, by replacing in M the black edges of the cycle
by the white edges, we will obtain a matching of larger
total sum. �

The above alternating cycle idea in the problems
about intersections of geometric objects induced by
matchings appeared in the proof of Theorem 3 in the
paper of Pirahmad et al. [7].

Lemma 3 Each vertex of G has at least one white
edge incident to it.

Proof. Consider the blue vertex a′. Assume w.l.o.g.
that o is the origin of coordinates, and a′ is in the
positive direction of the y-axis. We have that ∠aoa′ <
π/2 because o /∈ B(aa′), then assume w.l.o.g. that a is
in the interior of the first quadrant Q1. Let Q2, Q3,
and Q4 be the second, third, and fourth quadrants,
respectively. Further assume w.l.o.g. that rays `(aa′),
`(bb′), and `(cc′) appear in this order counterclockwise.

Assume by contradiction that there is no white edge
incident to a′. This implies that b, c belong to the inte-
rior of Q1 ∪Q2. If c ∈ Q2, then the counterclockwise
rotation angle from `(cc′) to `(aa′) is larger than π.
Hence, c ∈ Q1. If b ∈ Q1, then the counterclockwise
rotation angle from `(aa′) to `(bb′), or that from `(bb′)
to `(cc′), is larger than π. Hence b ∈ Q2. Further-
more, if both b′ and c′ belong to Q1 ∪ Q2, then the
counterclockwise rotation angle from `(bb′) to `(cc′)
is larger than π. Hence, at least one of b′, c′ belong
to the interior of Q3 ∪ Q4. That is, b′ ∈ Q3 and/or
c′ ∈ Q4. The proof is divided now into three cases:
Case 1: b′ ∈ Q3 and c′ ∈ Q4. Since b ∈ Q2 and

c′ ∈ Q4, the angle ∠boc′ ≥ π/2, which implies that
o ∈ B(bc′) (see Figure 2a). That is, edge (b, c′) is

o

a′

b c

b′
c′

(a)

o

a′

b c

b′

c′

θ

γ

β

(b)

Figure 2: Proof of Lemma 3. Black edges are in normal
line style, and white edges in dashed style.

white. Similarly, edge (b′, c) is also white. The colors
of the edges of the cycle (b, c′, c, b′, b) alternate, then
Lemma 2 implies a contradiction.
Case 2: b′ ∈ Q3 and c′ /∈ Q4. Since the coun-

terclockwise rotation angle θ from `(bb′) to `(cc′) is
smaller than π, we must have that c′ ∈ Q1. As in
Case 1, we have that edge (b′, c) is white, given that
b′ ∈ Q3 and c ∈ Q1. Let β be the half of the angle
∠bob′, and γ be the half of the angle ∠coc′ (see Fig-
ure 2b). Note that ∠bob′ < π/2 and ∠coc′ < π/2 be-
cause o /∈ B(bb′) and o /∈ B(cc′). We have that β, γ <
π/4, which implies that ∠boc′ ≥ 2π−β− γ− θ ≥ π/2.
Hence, edge (b, c′) is also white. Again, the colors
of the edges of the cycle (b, c′, c, b′, b) alternate, and
Lemma 2 implies a contradiction.
Case 3: b′ /∈ Q3 and c′ ∈ Q4. The proof of this

case is analogous to that of Case 2.
The lemma thus follows. �

Lemma 3 implies that the graph G has always a
cycle (of length four or six) whose edges are color
alternating. Hence, Lemma 2 implies a contradiction,
and we obtain that the max-sum matchingM ensures
that E(aa′)∩E(bb′)∩E(cc′) 6= ∅. Therefore, Theorem 1
holds.
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Abstract

Let P be a set of n points in R3 in general position,
and let RCH(P ) be the rectilinear convex hull of P .
In this paper we use an efficient O(n log2 n) time and
O(n log n) space algorithm to compute and maintain
the set of vertices of the rectilinear convex hull of
P as we rotate R3 around the Z-axis to obtain an
improvement of the time complexity in an optimization
algorithm for a fitting problem in R3.

1 Introduction

Let P be a set of n points in R3 in general position,
and let RCH(P ) be the rectilinear convex hull of
P . An open octant in R3 is the intersection of the
three open halfspaces, whose supporting planes are
perpendicular to the X-axis, to the Y -axis, and to the
Z-axis, respectively. An octant is called P -free if it
contains no elements of P . The rectilinear convex hull
of a set of points in R3 is defined as

RCH(P ) = R3 \
⋃

W∈W(P )

W,

where W(P ) is the set of P -free open octants of R3.

Theorem 1 [2] The rectilinear convex hull of P ,
RCH(P ), can be computed in optimal O(n log n) time
and O(n) space.

If we do rotations of the X- and Y -axis around the Z-
axis by an angle θ in the clockwise direction, instead
of octants we get θ-octants, and the corresponding
rectilinear convex hulls generated RCHθ(P ). Thus,
an open θ-octant is the intersection of three open
halfspaces whose supporting planes are orthogonal to
three mutually orthogonal lines through the origin Xθ,
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Yθ, and Z. An open θ-octant is called P -free if it
contains no elements of P . The θ-rectilinear convex
hull RCHθ(P ) of a point set P is defined as

RCHθ(P ) = R3 \
⋃

W∈Wθ(P )

W,

where Wθ(P ) denotes the set of all P -free open θ-
octants. The points of P are labeled {p1, . . . , pn} from
top to bottom by decreasing z-coordinates.

Theorem 2 [2] Maintaining the elements of P that
belong to the boundary of RCHθ(P ) as θ ∈ [0, 2π] can
be done in O(n log2 n) time and O(n log n) space. The
algorithm stores the set of angular intervals in [0, π]
at which the points are θ-active.

2 A 2-fitting problem in 3D

The oriented 2-fitting problem [1] is defined as follows:
Given a point set P in R3, find a plane Π, called the
splitting plane of P (assume that Π is parallel to the
XY -plane), and four parallel halfplanes π1, π2, π3, π4,
called the supporting halfplanes of P , such that:

1. Π splits P into two non-empty subsets P1 and P2,
i.e., {P1, P2} is the bipartition of P produced by
the splitting-plane Π.

2. π1, π2, π3, π4 are orthogonal to Π, π1 and π2 lie
above Π, and π3 and π4 lie below Π, each one of
π1, π2, π3, π4 containing at least a point of P . The
point sets P1 and P2 are contained between π1

and π2, and π3 and π4, respectively. See Figure 1.

3. The maximum of ε1 and ε2 is minimized, where
ε1 is the error tolerance of P1 with respect to π1

and π2, and ε2 is the error tolerance of P2 with
respect to π3 and π4.

4. The solution for the 2-fitting problem is given by
the mid halfplane of the supporting halfplanes π1

and π2 and the mid halfplane of the supporting
halfplanes π3 and π4.
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The error tolerances ε1 and ε2 are defined by the Eu-
clidean distances between the two parallel supporting-
halfplanes on either sides of Π. The problem con-
sists in getting the bipartition {P1, P2} of P such that
max{ε1, ε2} is minimum. It is a min-max problem.
See Figure 1. If the orientation of the splitting plane

Π

ε1

ε2

X

Y

Z

P1

P2

π1

π2

π3

π4

Figure 1: The splitting-plan plane Π and the two pairs
of parallel supporting-halfplanes.

is fixed, the problem can be solved in O(n2) time and
O(n) space, as proved by Dı́az-Báñez et al. [1]. We
will design an algorithm that bounds the solution for
this case: when the orientation of the splitting plane
is fixed. The complexities are smaller than those in
the algorithm Dı́az-Báñez et al. [1]. In our algorithm,
instead of doing a sequence of bipartitions of P , we will
maintaining RCHθ(P ) as we rotate the space around
the Z-axis, and compute optimal solutions in each of
the linear number of events at which the RCHθ(P )
changes for θ ∈ [0, π].

We assume that the splitting-plane Π is parallel
to the XY plane, all the points of P are above the
XY plane and sorted with respect to the z-coordinate,
where p1 is the point with the largest z-coordinate,
and pn is the point with the smallest z-coordinate. We
also assume that the Z-axis passes through p1, and
thus, its coordinates do not change as we rotate R3

around the Z-axis, and p1 and pn are always in the
boundary of RCHθ(P ).

Suppose that the supporting halfplanes have nor-
mal unit vectors. Thus, the 2-fitting problem re-
duces to computing four parallel supporting halfplanes
π1, π2, π3, π4 of a bipartition {P1, P2} of P , and there-
fore, to computing four points in the boundary of
RCHθ(P ), for some θ ∈ [0, π]. See Figure 2.

We will discretize the problem by considering the
angular sub-intervals of [0, π] such that in each sub-
interval the points in the boundary of RCHθ(P ) do
not change. By Theorem 2, their number is linear in n.

Then, we will show how to optimize the error tolerance
at the endpoints of each of these sub-intervals.

Recall that a point p ∈ P is said to be θ-active if at
least one of the pθ-octants is P -free. The definition of
a θ-active point considering an octant can be easily
adapted to considering a dihedral (two perpendicular
and axis-parallel planes) as follows:

Definition 3 Let p ∈ P and {s, t} ∈
{{1, 2}, {3, 4}, {5, 6}, {7, 8}}. We say that p is a
θ{s,t}-active point if p is θ-active for both the s-th
and t-th octants.

For example, a point p ∈ P is θ{1,2}-active if p is
θ-active for both the first and second octants. In
fact, the union of the first and second pθ-octants is a
dihedral, which is P -free and its edge goes through p.

Lemma 4 The boundary of the projection of
RCHθ(P ) on the ZYθ plane is formed by the points of
P which are θ{1,2}-active, θ{3,4}-active, θ{5,6}-active,
and θ{7,8}-active in the direction defined by the ZYθ
plane in the unit circle S1. Thus, the four staircases
of the boundary of the projection of RCHθ(P ) on
the ZYθ plane are as follows: the first staircase is
formed by the θ{1,2}-active points, the second stair-
case is formed by the θ{3,4}-active points, the third
staircase is formed by the θ{5,6}-active points, and the
fourth staircase is formed by the θ{7,8}-active points.

Proof. The proof follows by observing that any point
p in the interior of the projection of RCHθ(P ) on the
ZYθ plane is dominated by at least one point for each of
the four quadrants, and it is so because p is not θ{s,t}-
active for any {s, t} ∈ {{1, 2}, {3, 4}, {5, 6}, {7, 8}},
see Figure 2. Furthermore, the rightmost point in the
projection on the ZYθ is both θ{1,2}-active and θ{7,8}-
active, and the leftmost point is both θ{3,4}-active and
θ{5,6}-active. �

Let pθleft and pθright denote, respectively, the leftmost
and rightmost points of the projection of P on the
plane ZYθ. For any angle θ, let Lθ be the list consisting
of the θ{1,2}-active points and the θ{5,6}-active points
of P , sorted in decreasing order of their z-coordinate.
By simplicity, we assume with loss of generality that
no two elements of P have the same z-coordinate. Let
m = O(n) denote the number of elements of Lθ and let
z1, z2, . . . , zm denote the sorted elements of Lθ. The
θ{1,2}-active points of Lθ, those of the first staircase
of RCHθ(P ) are colored red, and the θ{5,6}-active
points, those of the third staircase of RCHθ(P ), are
colored blue (see the red and blue staircases of Figure 2,
containing as vertices the red and blue elements of
Lθ, respectively). We can represent Lθ as a standard
binary search tree, with extra O(1)-size data at each
node, such that inserting/deleting an element can be
done in O(log n) time, and also the following queries
can all be answered in O(log n) time:
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εθ,Π1

εθ,Π2

pθleft
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Figure 2: Projection of the RCHθ(P ) on the ZYθ
plane. The bipartition plane Π is determined by
the θ{1,2}-active point p and the θ{5,6}-active point

q, which determine the error tolerance functions εθ,Π1

and εθ,Π2 .

(1) Given an element in the list, retrieve its position.

(2) Given a position j ∈ {1, 2, . . . ,m}, retrieve the
rightmost red element in the sublist z1, z2, . . . , zj .

(3) Given a position j ∈ {1, 2, . . . ,m}, re-
trieve the leftmost blue element in the sublist
zj , zj+1, . . . , zm.

By simplicity in the explanation, we will assume that
pθleft is always above pθright in the z-coordinate order.

Hence, any bipartition plane Π must have pθleft above

it and pθright below it. Furthermore, Π is determined by
the closest θ{1,2}-active point p above Π and the closest
θ{5,6}-active point q below Π (see Figure 2). This is
why the list Lθ is for the θ{1,2}-active and θ{5,6}-active
points. If the assumption is not considered, then our
arguments must include a similar list with the θ{3,4}-
active and θ{7,8}-active points for the situations in

which pθleft is below pθright.

The next facts are the keys for the algorithm:

1. Since each point of P can change its condition
of being θ{s,t}-active a constant number of times,
then the total number of times there is a change
in some of the four staircases, hence in Lθ, is
O(n). Thus, we have O(n) intervals of [0, π] with
no change in the staircases. We can then define
the sequence Θ of the N = O(n) angles 0 = θ0 <
θ1 < θ2 < · · · < θN = π, such that for each
interval [θi, θi+1), i = 0, 1, . . . , N − 1 the list Lθ
do not change.

2. For an angle θ ∈ [0, π] and a point p of P , let
pθ be the projection of p on ZYθ, and let αp
be the angle formed by the X-axis and the line

through the origin O and the projection of p on
the XY -plane. For any point q, let d(q, Z) denote
the distance from q to the Z-axis. We have that
d(pθ, Z) = d(p, Z)·cos(αp−θ), which is a function
depending only on θ since d(p, Z) and αp are
constants.

3. For a fixed angle θ ∈ [0, π], a bipartition of P
by a plane Π induces a partition of the list Lθ =
z1, z2, . . . , zm into two sublists: z1, z2, . . . , zk with
the elements above Π, and zk+1, zk+2, . . . , zm with
the elements below Π. And vice versa, every such
a partition of Lθ into two lists induces a plane Π
that bipartitions P . Let the θ{1,2}-active point
p and the θ{5,6}-active point q be the witnesses
of this bipartition. That is, p is the rightmost
red element in z1, z2, . . . , zk, and q is the leftmost
blue element in zk+1, zk+2, . . . , zm (see Figure 2).
The error tolerances for this bipartition, denoted
εθ,Π1 and εθ,Π2 , are given by the distances

εθ,Π1 = d(pθleft, Z) + d(pθ, Z) and

εθ,Π2 = d(pθright, Z)± d(qθ, Z),

where the + or − depends on whether qθ is to
the left or right of the Z-axis in the ZYθ plane.
Note that when moving Π upwards, the func-
tions εθ,Π1 and εθ,Π2 are non-increasing and non-
decreasing, respectively. Hence, to find an optimal
Π for a given angle θ, we can perform a binary
search in the range {k1, k1 + 1, . . . , k2 − 1} ⊂
{1, 2, . . . ,m − 1} to find an optimal partition
z1, z2, . . . , zk and zk+1, . . . , zm of Lθ, where k1

and k2 are the positions of pθleft and pθright in Lθ,
respectively.

The binary search does the following steps for
a given value k ∈ {k1, k1 + 1, . . . , k2 − 1}: Con-
sider a bipartition plane Π induced by the par-
tition z1, z2, . . . , zk and zk+1, . . . , zm of Lθ, and
find the witnesses points p and q, each in O(log n)
time by using the queries of the tree supporting
Lθ. Then, compute εθ,Π1 and εθ,Π2 in constant

time. If εθ,Π1 = εθ,Π2 , then stop the search. Oth-

erwise, if εθ,Π1 < εθ,Π2 (resp. εθ,Π1 > εθ,Π2 ), then
we increase (resp. decrease) the value of k ac-
cordingly with the binary search and repeat. We
return the value of k visited by the search that
minimizes max{εθ,Π1 , εθ,Π2 }. This search makes
O(log n) steps, each in O(log n) time, thus it costs
O(log2 n) time.

4. Let θi and θi+1 be two consecutive angles of the
sequence Θ. It may happen for some angle θ ∈
(θi, θi+1), and some bipartitioning plane Π, that

εθ,Π1 = εθ,Π2 <
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< max
{
εθi,Π1 , εθi,Π2

}
,max

{
ε
θi+1,Π
1 , ε

θi+1,Π
2

}
.

That is, the objective function improves inside
the interval [θi, θi+1) for the angle θ. In fact, this
can be happen for a linear number of angles. For
example, suppose that pθleft and pθright are suffi-
ciently far from the Z-axis, and the rest of the
elements of Lθ are suffiently close to the Z-axis.
Further suppose that the function d(pθleft, Z) is

increasing, and function d(pθright, Z) is decreas-
ing in (θi, θi+1), and that they coincide for some
some θ ∈ (θi, θi+1). For any bipartition plane
Π, we will have that the tolerance functions
εθ,Π1 ≈ d(pθleft, Z) and εθ,Π2 ≈ d(pθright, Z) are in-
creasing and decreasing, respectively, and they
will also coincide for some angle θ ∈ (θi, θi+1).

Considering all the facts above, we next describe
an approximation algorithm running in subquadratic
time for solving the 2-fitting problem in 3D, in the
case that the orientation of the splitting-plane is fixed.
The approximation consists in computing the best
bipartition plane for a discrete set of critical angles.
That is, we find such a plane for the O(n) angles of
the sequence Θ. Our algorithm leaves apart the fact
number 4 above, which would imply to consider a
quadratic number of critical angles.

2-fitting algorithm in 3D. Fixed orientation
of the splitting-plane

1. By Theorems 1 and 2, and Lemma 4, we com-
pute in O(n log2 n) time and O(n log n) space,
for all points p ∈ P the angular intervals I(p)
in which p is θ{s,t}-active for some {s, t} ∈
{{1, 2}, {3, 4}, {5, 6}, {7, 8}}. We have O(1) in-
tervals for each p, each one associated with the
corresponding {s, t}. For each p, we intersect
pairwise the intervals of I(p) to find the set I ′(p)
of O(1) intervals such that for each interval we
have: p is only θ{1,2}-active; p is both θ{1,2}-active

and θ{7,8}-active (i.e., p is pθright); p is only θ{5,6}-
active; or p is both θ{3,4}-active and θ{5,6}-active

(i.e., p is pθleft).

2. We sort in O(n log n) time the endpoints of I ′(p)
for all p ∈ P to obtain the sequence Θ of the O(n)
angles 0 = θ0 < θ1 < θ2 < · · · < θN = π, such
that the list Lθ do not change for all θ ∈ [θi, θi+1),
i = 0, 1, . . . , N − 1. Thinking on sweeping the
sequence Θ with the angle θ from left to right,
we associate with each θi the point pi of P and
the interval of I ′(pi) with endpoint θi. Then, for
each θi we know which point of P changes some
θ{s,t}-active condition, and the precise conditions
it changes.

3. We sweep Θ from left to right: As a initial step,
for θ = 0, we compute the projection of RCH0(P )

on the plane ZY0, the points p0
left and p0

right in
the projection, and build the list L0 (as a tree)
with the θ{1,2}-active and θ{5,6}-active points in
O(n log n) time.

In the next steps, for i = 1, 2, . . . , N , we have
θ = θi and we update pθleft and pθright in constant

time from p
θi−1

left , p
θi−1

right, and the point pi associated
with θi, and update Lθ by inserting/deleting pi
in O(log n) time. The color of pi (red or blue)
is known according to the θ{s,t}-active condition
that pi changes.

In each step, the initial one and the subsequent
ones, we perform the binary search in Lθ in
O(log2 n) time to find the bipartition plane Π

that minimizes εθ = max{εθ,Π1 , εθ,Π2 }. At the end,
we return the angle θ of Θ (joint with its corre-
sponding optimal plane Π) such that εθ is the
smallest over all angles of Θ.

It is clear that the running time of the above algo-
rithm is O(n log2 n). We note that the quality of the
solution can be improved in terms of ε-approximations.
Indeed, for ε > 0, if we split the interval [0, π] into
sub-intervals of length δ = ε/D, where D is an up-
per bound of the absolute value of the first derivative
of the functions εθ,Π1 and εθ,Π2 for all θ, and apply
the binary search also for θ being the endpoints of
these sub-intervals, then the solution APROX given
by the algorithm is such that APROX −OPT ≤ δD,
where OPT denotes the optimal solution. This im-
plies that OPT ≤ APROX ≤ OPT + ε. The
running time will be O(n log2 n + (π/δ) log2 n) =
O(n log2 n + (Dπ/ε) log2 n). A value for D can be
twice the maximum distance of a point of P to the
Z-axis, and can be considered a constant by scaling
the point set P . Hence, the final running time is
O(n log2 n+ ε−1 log2 n).

Therefore, we arrive to the following theorem:

Theorem 5 For any ε > 0, an upper bound of the
optimal solution of the oriented 2-fitting problem in
3D, with absolute error at most ε, can be obtained in
O(n log2 n + ε−1 log2 n) time and O(n log n) space if
the orientation of the splitting plane is fixed.
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Abstract

In this paper we extend and improve algorithms for the
separability of red and blue points in the plane using
four parallel lines. We also prove sufficient conditions
to meet this separability criteria.

1 Introduction

Separability problems of a bichromatic point set in
R2 by a set of parallel lines were studied in Arkin et
al. [1, 2], Hurtado et al. [4], and Seara [9]. The number
of these lines is denoted by k. It is well known that
two object sets are line separable (k = 1) if and only
if their convex hulls do not intersect. The decision
problem of linear separability for two disjoint sets of
points, segments, polygons, or circles can be solved in
linear time, see Megiddo [6], and O’Rourke et al. [8].

Let B be a set of blue points and R a disjoint set of
red points B∩R = ∅, both in the plane, |B| = |R| = n,
and let CH(B) and CH(R) be their convex hulls.
The minimum number k of parallel lines separating R
and B into monochromatic strips can be computed in
O(n2 log n) time and O(n2) space. If k ≤ 4, there ex-
ists an algorithm that solves the problem in O(n log n)
time and O(n) space under a constraint on the point
sets. We ask for determining the minimum k for sepa-
rating R and B, or whether there exists some direction
such that R and B can be separated with k lines.

Open problem 1 Can it be decided if B and R are
separable by four parallel lines in O(n log n) time and
O(n) space if CH(B) does not contain any red point?

The algorithm in [9] has a constraint over the points.
We try to solve the problem without the constraint. If
a general algorithm for k = 4 is found, maybe we can
generalize it for any k. Another open problem in [9]:

Open problem 2 Can it be decided in O(kn log n)
time if B and R are separable with at most k ≥ 5
parallel lines?

∗Email: nicolau.oliver@estudiantat.upc.edu.
†Email: carlos.seara@upc.edu. Supported by PID2019-

104129GB-I00/ MCIN/ AEI/ 10.13039/501100011033.

Let “/” be denote one of the separating parallel
lines. We refer to red/blue/red/blue . . . as the no-
tation for the subsets R1/B1/R2/B2/ . . . , and the
separators as s1, s2, s3, s4, . . . . Assuming k is mini-
mal for any direction, only two possible orderings of
the subsets are possible: red/blue/red/blue/ . . . , or
blue/red/blue/red/ . . . . From now on consider only
red/blue/red/blue/ . . . separability. A caliper rotates
clockwise from 0 to π around a convex polygon, and
the separators are denoted as si − sj . Calipers are
always parallel and rotate in sync.

Observation 3 All points outside the polygon enter
and leave the rotating caliper once, and all points
inside the polygon are always inside the caliper.

We say that a point p inside a caliper is “alive” and
is otherwise “dead”. The supporting lines of p with
respect to the polygon give an interval of directions
in which p is alive; one such line corresponds to the
entrance slope of p (its “birth”) and the other to the
departure slope of p (its “death”). The clockwise slope
of the supporting lines with respect to the x-axis are
computed to be inside the [0, π] interval.

2 Separability using four lines

For the k = 2, 3 strip separability, Arkin et al. [2]
shows O(n log n) time optimal algorithms. From now
on we only consider relevant directions that need at
least k = 4 lines for separability. The algorithm starts
by constructing a caliper that rotates around CH(B).
This caliper will constitute the separators s1 and s4,
see Figure 1. Then, it computes the support lines of
the red points with respect to CH(B) and builds the
sorted list of birth/death events in O(n log n) time.
The slopes of the support lines belong to [0, π]. With
this event list the caliper can be rotated over CH(B),
yielding the sets R1,R2,R3 for all directions. See Fig-
ure 1. Next, the algorithm separates the blue points
into B1 and B2. Take a red point g inside CH(B) as
a guard.

Observation 4 (i) The caliper around CH(B) is
never empty of red points. (ii) Red points inside
CH(B), including g, belong to R2. (iii) A line through
g separates B1 from B2. See Figure 1.
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s1 s2 s3 s4

R1 B1

R2

B2
R3g

Figure 1: Separability by 4 lines. A red point g inside
CH(B) is a guard that separates B1 and B2 for any
direction. A jump event classifying B1 and B2.

Jump events describe how the blue points belong to B1

or B2 as the caliper rotates. The list of jump events
follows from Observation 4, from sorting the angles of
the lines through g and each blue point in O(n log n)
time. This list with O(n) angles is the bi-partition
list of the guard g. By merging the jump events with
the birth and death events we can keep track of all
the subsets R1/B1/R2/B2/R3 as we rotate the caliper.
See Figure 1.

In the interval between consecutive events [ei, ei+1],
the subsets R1/B1/R2/B2/R3 don’t change. Neither
do their dynamic convex hulls, abbreviated DCH.
This interval is separable if DCH(B1) with DCH(R2)
and DCH(R2) with DCH(B2) are separable.
Thus, we compute the supporting lines between

the adjacent pairs of dynamic convex hulls (B1/R2,
R2/B2). Intersecting these intervals Θ1, Θ2, Θ3, and
Θ4 with [ei, ei+1]. Repeat for each consecutive pair of
events, and merge the results by calculating the union
of intervals.
Computing these dynamic convex hulls takes

O(n log n) time, and updating them takes O(log n)
time according to Brodal and Jacob [3]. So the algo-
rithm has O(n log n) time complexity.

2.1 New algorithm for four line separability

Assume that there are no red points (guards) inside
CH(B). Let m guards G =< g1, . . . , gm > be a se-
quence of guards sorted by birth angle. As above for
g, for all gi ∈ G compute the sorted bi-partition list in
total O(mn log n) time. This guarantees that we can
use the bi-partition lists for the entire rotation.

To separate the blue points into B1 and B2, we need
at least one guard gi at any direction inside the caliper,
and we use the current guard bi-partition list to do it.
When a guard dies, another takes its place.

Observation 5 There always exists the set G ⊆ R,
such that for all relevant directions there is at least
one guard gi ∈ G inside the caliper around CH(B).

2.2 Minimizing the guard set

The guards have a birth and death event associated,
forming the living angle interval. Before an alive
guard dies, the next must already be alive. The liv-
ing angle interval is referred to as the angle that is
“guarded/covered” by that guard, see Figure 2; and
those intervals must overlap totally covering [0, π].
Thus, the problem of minimizing guards is equivalent
to that of minimizing the sets to cover [0, π].

r1

r2

r3

r4

r5

r6

r7

r8

0 2π

r1 r2 r3 r4 r5 r6 r7 r8

Figure 2: A set of 8 red points covering [0, 2π].

3 Sufficient conditions for four line separability

As m could be linear in n, this begs the question of
finding conditions over R and B that guarantee that
m is constant. There exists a family of configurations
with a constant number of guards.

Condition 1 If there exist guards a, b, c ∈ R such

that all the sides of the triangle Èabc cross CH(B),
then G = {a, b, c} is a guard set that covers the entire
rotation of the caliper.

Thus, all configurations that satisfy the Condition 1
have an optimal set of guards of constant size. The
guard set G = {a, b, c} had a close relationship with
the triangle it formed. So, we extend this geometrical
analysis to other guard sets: Trace the polygonal line
given by the sequence, closing it by adding an edge
from the last to the first guard.

Condition 2 < g1, . . . , gm > is a guard sequence and
all the edges of the closed polygonal line traced by the
sequence of guards cross CH(B), and m is odd.

Lemma 6 IfG =< g1, . . . , gm > satisfies Condition 2,
then G covers the entire rotation of the caliper.

This family of closed polygonal lines can be considered
for a constant value of m, as m = 3 yields the triangle.
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The polygons that result from Condition 2 can be from
convex to self intersecting. It includes the family of
star polygons, with a special interest in those of the
form {m/⌊m2 ⌋}. For an example, see the pentagram
{5/2} for m = 5 and the heptagram {7/3} in Figure 3.

Figure 3: A pentagram {5/2} and a heptagram {7/3}.

Corollary 7 If G =< g1, . . . , gm > traces an odd star
polygon, whose segments all intersect CH(B), then G
covers the entire rotation of the caliper.

The star polygons show that the new algorithm does
indeed allow for solving much more general configura-
tions. Nevertheless, Lemma 6 is a sufficient but not
necessary condition for an input R and B to have a
constant size set of guards. See Figure 4.

g1

g2
g3

g4

g5

Figure 4: Guards covering the entire rotation, but not
tracing a star polygon. Equivalent guards g1 ≡ g5.

If two guards have the same living angle, they would
receive identical use by the algorithm. Thus, two
guards are said to be equivalent if the interval they
cover is identical, i.e. the support lines of both guards
are pairwise parallel. For each red point exterior to
CH(B) there is precisely only one other point that
satisfies this equivalence: find the support lines of
the original point, trace the two parallel support lines
tangent to CH(B) on the antipodal points, its inter-
section point is the equivalent guard. See Figure 4.
This equivalence relation reflects that it is possible
to swap a guard with its equivalent one, without it
affecting the execution of the algorithm.

Observation 8 If G =< g1, . . . , gm > covers the en-
tire rotation withm odd, there exists equivalent guards
G′ =< g′1, . . . , g

′
m > that trace a star polygon.

4 Finding the optimal guards

As pointed out before, the new algorithm complexity
depends on the set G of guards. So it is central to
find a constant size G. The guards can be understood
as the interval of the caliper rotation they cover, it
is the only relevant attribute for the algorithm. This
suggests representing the guards as intervals in the unit
circle, and each guard being their covering interval.
See Figure 5.

Such representation leads to a minimization interval
cover problems in R: to find, amongst a set of intervals,
the minimum amount such that the union covers an
interval [a, b]. This is a well-known problem [7] that
can be solved via a greedy algorithm in O(n log n)
time with respect to the number of intervals in the
set. This indeed can be adapted to find a minimal
G. The intersection graph of the intervals has as

g

g′

Figure 5: Red guards and their angular intervals.

vertices the intervals, and two vertices are connected
if the intersection of the intervals is not empty [5]. See
Figure 6. This graph represents pairs of guards that
are both alive in some direction. The rotation of the
caliper is clockwise, so the edges are arcs and satisfy
that the origin guard dies before the destination guard.
The direction of the arc captures how the sequence
< g1, g2, . . . , gm > jumps from one guard to the next.

1

2

3

4

5
6

7
8

9

10

1
2

3

4

5
6

7

8

9

10

Figure 6: Intersection graph of angular intervals.

Observation 9 gi dominates gj if all directions cov-
ered by gj are also covered by gi.

Only the red points that are not dominated by other
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red points are considered as candidates. This pruning
can be done by sorting the guards in O(n log n) time.

4.1 An algorithm to find optimal guards

Once dominated red points have been pruned, we find
the smallest size set of guards. Let Gopt be an optimal
guard set, and < g1, . . . , gm >opt its sequence. A local
optimality can be found among consecutive guards of
the sequence. Given gopti ∈ < g1, . . . , gm >opt there
might be several guards that cover the angle of death of
gopti . Let candidates(gi) be the set of guards that could
“succeed” gi. It follows that gopti+1 ∈ candidates(gi).
These candidates can be understood more easily as
the adjacent vertices of gi in the intersection graph.
From the set candidates(gi), a greedy heuristic

chooses the guard that dies the last. The candidate
selected by this heuristic will be alive at least for all
directions covered by any guard in candidates(gopti ),

clockwise from gopti death. Let ggreedyi+1 be this greedy
choice of candidate.

Observation 10 ggreedyi+1 is as optimal as gopti+1.

This is the same greedy heuristic used to solve the
classical interval cover problem. Given this heuris-
tic, instead of representing all the outgoing edges
for each gi in the graph, just draw the ones cho-
sen by the greedy heuristic. Omitting degenerate
cases, all vertices now have at most one outgoing
degree. If we assume that R and B are separable
using k = 4 lines, the whole rotation must be cov-
ered, so ∀gi |candidates(gi)| ≥ 1. This results in
degout(gi) = 1. This graph will be referred to as the
greedy intersection graph, GIG = (V,E), where the
vertices V = Rpruned exclude dominated guards, and
it is computed in O(n log n) time from the intervals.

Observation 11 If R and B are separable by k = 4
lines, the vertices of GIG have degout(gi) = 1 and the
number of edges is

∑n
i degout(gi) = n.

First, GIG can’t be acyclic, meaning that it is not
possible to cover the entire rotation. So, GIG has
at least a directed cycle of length 2, and the cycle
corresponds to a < g1, . . . , gm >opt. In fact, each
connected component of the GIG must have one and
only one cycle. Any path starting from any vertex
eventually ends up in one of those cycles.

Observation 12 GIG cycles have the same length.

A way of finding < g1, . . . , gm >opt can be described
in terms of executing search algorithms over GIG, see
Tarjan [10]: for any vertex in GIG, follow the arcs
until detecting a cycle, which is an O(n log n) time
algorithm. Finally, we have an algorithm that finds
the smallest set G of guards, even in the worst case
that m = n.

Thus, in O(n log n) time we can detect if the in-
put can be solved by the new algorithm in optimal
O(n log n) time.

5 The second open question

The main insight is that the new k = 4 algorithm
works because it imposes a similar structure to the
k = 2 algorithm. The new k = 4 algorithm rotates
an extra caliper around the CH(Rrec), where Rrec

(Red recursive) are the points inside CH(B). If a
few blue points lay inside CH(Rrec), call them Brec,
then the recursive algorithm rotates a third caliper
around CH(Brec). While the substructure repeats, the
recursive algorithm can nest further calipers. These
are used in a very similar manner to how they are used
in the new k = 4 algorithm.
For each of these recursively defined convex hulls,

compute the same events as for the new k = 4 algo-
rithm. Each nested hull bi-partitions the hull that con-
tains it. Each caliper determines a birth and death for
each point. The cost of all these operations amounts
to repeating the computations k times, once per each
nested caliper. The events generated are thus O(kn),
and the total cost is O(kn log n).
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Abstract

In this paper, we extend the application of the
algebraically-informed deep networks (AIDNs) intro-
duced in [4] in the case of evolution algebras. For
the associative evolution algebra, the performance of
AIDNs is tested for known theoretical results. This is
a first step towards neural-network-aided classification
of evolution algebras.

1 Introduction

Evolution algebras were firstly introduced by Tian in
his Ph.D. Thesis [6] in 2004 and later published in
a book in 2008 [7]. These types of algebras belong
to the family of genetic algebras and have direct ap-
plications in non-Mendelian genetics [8]. In addition,
its applications to other branches of mathematics are
numerous, being connected, among others, with graph
theory, stochastic processes and Markov chains, group
theory and mathematical physics.
Classification problems in evolution algebras gen-

erally involve a large number of nonlinear equations.
This makes classifying evolution algebras a difficult
task. For instance, the classification of those evolution
algebras whose evolution operator (the main operator
of the algebra) is a homomorphism is still incomplete
[2]. The purpose of this paper is to help in this task
by searching for representations of evolution algebras
through neural networks, which will give us an approx-
imation of possible solutions to the problem that we
can later prove theoretically. To verify the effective-
ness of this method, we will use it for classifications
already achieved theoretically, such as the classifica-
tion of associative evolution algebras [1] or that of
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those evolution algebras whose evolution operator is a
derivation [3].
Algebraically-informed deep networks were intro-

duced in [4]. There, the authors provide a correspon-
dence between a representation of an algebraic struc-
ture and feed-forward neural networks where each
generator is associated with a neural network. To
find an appropriate representation, those networks are
trained using a traditional training algorithm which
error function is based on the relations needed to be
satisfied by the generators. In the case of associa-
tive evolution algebras, it is known that its structure
matrix is diagonal for any dimension. In this paper,
we adapt the AIDN implementation for associative
evolution algebras and test its performance.

This paper is organized as follows: in Section 2, the
basic concepts of evolution algebras, neural networks
and AIDN are provided. Next, in Section 3, AIDNs
are extended for associative evolution algebras and
experiments are depicted. Finally, in Section 4, some
conclusions and future work are described.

2 Background

This section provides a brief introduction to evolution
algebras, neural networks and algebraically-informed
deep networks over the real field. However, it can be
easily extended to the complex field.

2.1 Evolution algebras

An algebra E ≡ (E,+, ·) is said to be an evolution
algebra if there exists a basis B = {ei}ni=1 of E such
that ei · ej = 0, for all i ≠ j. Since B is a basis, the
product ej · ej = e2j can be written as

∑
i∈Λ aijei, for

some structure constants aij ∈ R. So, the product on
E is determined by the structure matrix A = (aij).
In general, evolution algebras are non-associative.

However, in this paper we will work with those that
are. This type of evolution algebras have been studied
in depth in [1], where it is shown the following theorem

Theorem 1 Let E be an evolution algebra. It is
equivalent:

1. E is associative.
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2. ei · e2j = 0, for all i ̸= j.

3. aijaki = 0, for all i ̸= j and for all k.

4. There exists a rearrangement of the basis B such
that the structure matrix has the form

(
Dr×r 0r×s

Ms×r 0s×s

)
,

where r + s = n and

• Dr×r is a diagonal matrix of order r.

• Ms×r is a s× r matrix.

• 0r×s and 0s×s are null matrices of dimension
r × s and s× s, respectively.

An evolution algebra is said to be non-degenerate
if e2j ̸= 0, for all j. In this case, the previous theorem
turns out to be

Corollary 2 Let E be a non-degenerate evolution
algebra with evolution operator L. Then, the following
assertions are equivalent

1. E is associative.

2. ei · e2j = 0, for all i ̸= j.

3. aijaki = 0, for all i ̸= j and for all k.

4. The structure matrix is a diagonal matrix with
nonzero diagonal elements.

For example, the evolution algebra with basis
{e1, e2, e3} and product defined by

e21 = e1,

e22 = 2e2,

e23 = 3e3,

is a non-degenerate associative evolution algebra, since
its structure matrix is Diag(1, 2, 3).

2.2 Neural networks

A neural network is a function Net : Rdin → Rdout

defined by a composition of layer functions fi : Rni →
Rmi , that is to say, Net = fL ◦ · · · ◦f1. The layer func-
tions are of the form fi(x) = αi(Wi(x)+bi), where Wi

is a mi×ni matrix, bi is a vector in Rmi and αi is the
activation function, a chosen function (generally non
linear) applied coordinate-wisely to an input vector.
We will denote the set of neural networks of the

form Net: Rn → Rn as N (Rn). This set is closed
under composition of functions and hence has a natural
algebraic structure (N (Rn),+, ◦).
The set of weights of a neural network are trained

using a gradient-based training algorithm induced by
a loss function L that measures how far is the output

of the neural network from the desired output. There
exist plenty of different hyperparameters to be tuned in
a neural network and a training algorithm. To name a
few: the number of layers and nodes, the loss function,
the learning rate, the number of epochs, among others.

2.3 Algebraically-informed deep networks (AIDN)

Let S = {si}ni=1 be a set of formal symbols (generators)
and R = {ri}ki=1 a formal set of equations satisfying
these generators. The system ⟨S | R⟩ is called a
presentation.

Presentations can encode different algebraic objects
depending on the algebraic operations that we are
willing to allow while solving the algebraic equations of
R. For example, if we allow operations of addition and
scalar multiplication by elements of a field satisfying
the axioms implied in the definition of vector space,
in addition to a bilinear product, then the resulting
algebraic structure induced by the presentation ⟨S | R⟩
is an algebra. Depending on the properties that we
allow in the product, this algebra can be, for example,
associative or unitary.
We are interested in finding neural networks

{fi(x; θi)}ni=1, where θi ∈ Rki is the parameter vector
of the network fi, such that these neural networks
correspond to the generators of S and satisfy the same
relations of R. Formally, this is equivalent to finding
a homomorphism from the algebraic structure ⟨S | R⟩
to (N (Rn),+, ◦).

The AIDN algorithm finds the weights {θi}ni=1 of the
networks {fi(x; θi)}ni=1 by defining the loss function
as follows

L(f1, . . . , fn) =
k∑

i=1

∥ F(ri) ∥22,

where F(ri) is the relation ri written in terms of the
networks {fi(x; θi)} and ∥ · ∥2 is the L2 norm. This
loss function is minimized using any known neural
network training algorithm such as gradient descent
or RMSprop [5].

3 AIDN for associative evolution algebras

In the case of associative evolution algebras, we con-
sidered a fixed canonical basis B in dimension n, hence
we want to find a set of generators corresponding
to the structure constants aij ∈ R. Let us describe,
firstly, the set of relations needed to be satisfied. The
third statemen of Theorem 1 specifies the rest of the
relations needed for the desired representation.
Finally, we desired to find those algebras that are

not trivial (i.e. its structure matrix is not null), so we
can add a final set of relations for the representation,
guaranteeing that a column in the structure matrix is
not null by minimizing 1∑n

i=1 |aij | for all j ∈ [[1, n]]1.

1Let us denote {1, . . . , n} by [[1, n]].
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Therefore, an associative algebra representation is
given by n2 generators {aij}i,j∈[[1,n]] subject to the
following relations:

1. For all i ̸= j and for all k: aijaki = 0.

2. For all j ∈ [[1, n]]: minimize 1∑n
i=1 |aij | .

Let us remark that the first set of relations is com-
posed of (n2 − n) · n equations, and the second set is
composed of n equations. As mentioned above, the
basis of the associative evolution algebra will be fixed
as the canonical basis which is composed of one-hot
vectors and the definition of the product induced by
the obtained generators. Therefore, the AIDN repre-
sentation of the algebra will be based on finding a set
of feed-forward neural networks {fij}i,j∈[[1,n]] ⊂ N (R)
associated to each of the structure constants which
satisfy the conditions stated above. The architecture
of those neural networks can be tuned by the user. In
our case, we decided to use very simple feed-forward
neural networks with just one hidden layer (1×12×1)
and a linear activation function. In the case of higher
dimensional representations, the number of layers and
nodes can be increased. The neural networks were
trained using the RMSprop training algorithm and
the structure matrices were computed for dimensions
2, 3, and 4. Each of the generators is the result of
applying neural networks to a specific real number
parameter that was used during the training process
as input data. In Table 1, examples of the matrices
obtained are displayed with the error values of the er-
ror function which history is depicted in Figure 1. Let
us remark that, as expected, the structure matrices
obtained are diagonal matrices, satisfying the already
known theoretical results.

4 Conclusions

In this paper, we have applied AIDNs to associative
evolution algebras. These networks were trained for
different dimensions. After the training process, the
matrices obtained satisfied the known theoretical re-
sults for the structure matrix of associative evolution
algebras, known to be diagonal. In future work, we
plan to apply AIDNs towards patterns discovery for
other types of evolution algebras.

Code availability The code of the exper-
iments is available in the following GitHub
repository https://github.com/Cimagroup/

AIDN-for-Evolution-Algebras.

Dimension Structure matrix

2

(
145.22 0

0 −143.69

)

3



19.94 0 0
0 −20.81 0
0 0 20.68




4




−23 0 0 0
0 −23.93 0 0
0 0 −22.74 0
0 0 0 −22.27




Table 1: Examples of structure matrices obtained after
training AIDNs are depicted together with the mean of
the loss values for all relations for different dimensions.
The reached loss values were of the order of 10−4 to
10−5.

Figure 1: Neural networks were trained for 50000
epochs with a learning rate of 10−3. As depicted,
the evolution of the loss function during the training
algorithm was similar in the three cases.
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Abstract

A rectilinear drawing of a graph is a drawing of the
graph in the plane in which the edges are drawn as
straight-line segments. The rectilinear crossing number
of a graph is the minimum number of pairs of edges
that cross over all rectilinear drawings of the graph.
Let n ≥ r be positive integers. The graph Kr

n, is the
complete r-partite graph on n vertices, in which every
set of the partition has at least ⌊n/r⌋ vertices. The
layered graph, Lr

n, is an r-partite graph on n vertices,
in which for every 1 ≤ i ≤ r−1, all vertices in the i-th
partition are adjacent to all vertices in the (i+ 1)-th
partition. In this paper, we give upper bounds on the
rectilinear crossing numbers of Kr

n and Lr
n.

1 Introduction

Let G be a graph on n vertices and let D be a drawing
of G. The crossing number of D is the number, cr(D),
of pairs of edges that cross in D. The crossing number
of G is the minimum crossing number, cr(G), over all
drawings of G in the plane. A rectilinear drawing of G
is a drawing of G in the plane in which its vertices are
points in general position, and its edges are drawn as
straight-line segments joining these points. The recti-
linear crossing number of G, is the minimum crossing
number, cr(G), over all rectilinear drawings of G in
the plane.
Computing crossing and rectilinear crossing num-

bers of graphs are important problems in Graph The-
ory and Combinatorial Geometry. For a comprehensive
review of the literature on crossing numbers, we refer
the reader to Schaefer’s book [1].

Most of the research on crossing numbers have been
focused around the complete graph, Kn, and the com-
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Figure 1: An example of Hill’s drawings of K8, where
here for convenience only the edges of one vertex are
drawn. Left: The drawing on a cylinder. Right: An
equivalent representation of Hill’s drawings via con-
centric cycles.

plete bipartite graph Kn,m. For the complete graph,
Hill [2] gave the following drawing of Kn; see Figure 1
for an example. Place half of the vertices equidistantly
on the top circle of a cylinder, and the other half
equidistantly on the bottom circle. Join the vertices
with geodesics on the cylinder. Hill showed that the
following number, H(n), is the crossing number of this
drawing, and it is now conjectured to be optimal. Let

H(n) :=
1

4

⌊n
2

⌋ ⌊n− 1

2

⌋⌊
n− 2

2

⌋⌊
n− 3

2

⌋

Conjecture 1 (Harary-Hill [3])

cr(Kn) = H(n).

For the complete bipartite graph, Zarankiewicz
gave a rectilinear drawing with the following num-
ber, Z(n,m), as crossing number of this drawing, and
it is now conjectured to be optimal. Let

Z(n,m) :=
⌊n
2

⌋⌊n− 1

2

⌋ ⌊m
2

⌋⌊m− 1

2

⌋

and
Z(n) := Z(n, n).

Conjecture 2 (Zarankiewicz [4])

cr(Kn,m) = Z(n,m).
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The number Z(n,m) is also conjectured to be the
general optimal crossing number, directly implying the
following conjecture.

Conjecture 3

cr(Kn,m) = cr(Kn,m).

Much less is known for the rectilinear crossing num-
ber of the complete graph. For n ≥ 10, it is known
that

cr(Kn) < cr(Kn).

In contrast to the case of the complete bipartite graph,
there is no conjectured value for cr(Kn), nor drawings
conjectured to be optimal. The best bounds to date
are

0.379972

(
n

4

)
< cr(Kn) < 0.380445

(
n

4

)
+O(n3).

The lower bound is due to Ábrego, Fernández-
Merchant, Leaños, and Salazar [5], and the upper
bound to Aichholzer, Duque, Fabila-Monroy, Garćıa-
Quintero, and Hidalgo-Toscano [6]. It is known that

lim
n→∞

cr(Kn)(
n
4

) = q,

for some positive constant q; this constant is known
as the rectilinear crossing constant.

Let Kn1n2...nr be the complete r-partite graph with
ni vertices in the i-th set of the partition; and let Kr

n

be the complete balanced r-partite graph in which
there are at least ⌊n/r⌋ vertices in every partition
set. Harborth [7] gave a drawing that provides an
upper bound for cr(Kn1n2...nr); and gave an explicit
formula for this number. He claims that for the case
of r = 3, his drawing can be made rectilinear. More
recently, Gethner, Hogben, Lidický, Pfender, Ruiz and
Young [8] independently studied the problem of the
crossing number and rectilinear crossing numbers of
complete balanced r-partite graphs. For r = 3, they
obtain the same bound as Harborth; and their drawing
is rectilinear.

LetH(n, r) be the number of crossings in Harborth’s
drawing for cr(Kr

n). Due to the complexity of the for-
mula, we use the following approximation to H(n, r)
instead. (All missing proofs can be found in the Ap-
pendix)

Lemma 4 If n is a multiple of r, then

H(n, r) ≤ 1

16

(
r − 1

r

)2(
n4

4
− 2n3

)
+O(n2).

In this paper, we mainly focus on the rectilinear
crossing number of Kr

n. If n is fixed and r tends to n,
then Kr

n tends to Kn. Thus, we believe that studying
the rectilinear crossing number of Kr

n might shed some
light on how optimal rectilinear drawings of Kn look
like.

2 Random Embeddings into Drawings of Kn with
Few Crossings

Suppose that we have a drawing (that can be recti-
linear but doesn’t have to be) D′ of Kn. If cr(D

′) is
small, it might be a good idea to use this drawing to
produce a drawing of a graph G on n vertices. Let D
be the drawing of G that is produced by mapping the
vertices of G randomly to the vertices of D′, and where
the edges are drawn as their corresponding edges of
D′. We call D a random embedding of G into D′. In
every 4-tuple of vertices of D′, there are three pairs of
independent edges, which could cross. Of these three
pairs at most one pair is crossing. For every pair of
independent edges of G, we have a possible crossing
in D; thus, the probability that this pair of edges is
mapped to a pair of crossing edges is equal to

1

3
· cr(D

′)(
n
4

) .

By defining, for every pair of independent edges of G,
an indicator random variable with value equal to one
if the edges cross and zero otherwise, we obtain the
following result where ||G|| is the number of edges in
G and d(v) is the degree of a vertex v.

Lemma 5

E(cr(D)) =
cr(D′)

3
(
n
4

)



(||G||

2

)
−

∑

v∈V (G)

(
d(v)

2

)
 .

Suppose that n is a multiple of r. For the crossing
number of Kr

n, we use Lemma 5 and Hill’s drawing of
Kn to obtain the following.

Theorem 6 Suppose that n is a multiple of r. Let
D be a random embedding of Kr

n into Hill’s drawing
of Kn. Then,

E(cr(D)) ≤ 1

16

(
r − 1

r

)2(
n4

4
− 3n3

2

)
+O(n2).

In [8], the authors obtain same bound on cr(Kr
n)

by considering a random mapping of the vertices of
Kr

n into a sphere, and then joining the corresponding
vertices with geodesics. This type of drawing is called a
random geodesic spherical drawing. In 1965, Moon [9],
showed that the expected number of crossings of a
random geodesic spherical drawing of Kn is equal to

1

16

(
n

2

)(
n− 2

2

)
= H(n)−O(n3);

which explains why the bound of Theorem 6 matches
the bound of [8].

Note that by Lemma 4 together with Theorem 6, it
holds that

E(cr(D))−H(n, r) ≤ 1

32

(
r − 1

r

)2

n3+O(n2) = O(n3).
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Thus, the random embedding gives an upper bound
on cr(D) that matches the conjectured value up to
the leading term, but it is a little worse in the lower
terms.

2.1 Rectilinear crossing number of Kr
n

Let D be a random embedding of Kr
n into an optimal

rectilinear drawing of Kn.

Theorem 7 Let r be a positive integer and n a mul-
tiple of r. Then

cr(Kr
n) ≤ E(cr(D))

≤ q

4!

(
r − 1

r

)2

n4 + o(n4)

< 0.015852

(
r − 1

r

)2

n4 + o(n4).

For a lower bound we have the following.

Theorem 8 Let r be a positive integer and n a mul-
tiple of r. Then

cr(Kr
n) ≥ cr(Kr)

(n
r

)4
.

Theorems 7 and 8 imply the following.

Corollary 9 Let r = r(n) be a monotone function of
n such that r →∞ as n→∞. Then

lim
n→∞

cr(Kr
n)(

n
4

) = q.

In both [7] and [8], it is conjectured that

cr
(
K3

n

)
= cr

(
K3

n

)
.

Using the order type database [10], we have verified
the following.

Observation 10

cr
(
K4

8

)
= 8 and cr

(
K4

9

)
= 15.

On the other hand

cr
(
K4

8

)
≤ H(8, 4) = 6 and cr

(
K4

9

)
≤ H(9, 4) = 15.

See Figure 2 for an example. From the above results
we conjecture the following.

Conjecture 11 There exists a natural number n0 > 9
such that for all n ≥ n0,

cr
(
K4

n

)
< cr

(
K4

n

)
.

Further, we pose the following problem.

Figure 2: A drawing of K4
8 with 6 crossings (left) and

K4
9 with 15 crossings (right).

Open problem 12 Let r ≥ 4 be a constant positive
integer. Does

lim
n→∞

cr(Kr
n)(

n
4

) = q

(
r − 1

r

)2

?

We believe that finding a good rectilinear drawing
of Kr

n, even for the case of r = 4, will help in under-
standing how crossing optimal rectilinear drawings of
Kn look like. Theorem 7 implies that

cr(K4
n) ≤ 0.00892n4 +O(n3).

We have found an explicit rectilinear drawing of K4
n

with

0.00953n4 +O(n3)

crossings.

2.2 Layered graphs

Let r be a positive integer and let n be a multiple of r.
The layered graph, Lr

n, is the graph defined as follows.
Its vertex set is partitioned into sets V1, . . . , Vr, each
consisting of n/r vertices. We call the set Vi, the i-th
layer of Lr

n. The edge set of Lr
n is given by

{uv : u ∈ Li and v ∈ Li+1, for i = 1, . . . , r − 1};

that is, the edges are exactly all possible edges between
vertices on consecutive layers. The random embed-
ding into crossing optimal drawings of Kn, seems to
give drawings of Kr

n with crossings close to the mini-
mum value. In this section, we show that for layered
graphs, the random embedding gives drawings with
considerably more crossings than the optimal draw-
ings. Note that L2

n = Kn/2,n/2, and L
3
n = K2n/3,n/3.

In the reminder of the section assume that r ≥ 4, and
for convenience assume also that n/r is even. Using
the random embedding technique into Hill’s drawing
of Kn, we obtain the following upper bound.

Theorem 13

cr(Lr
n) ≤

(r − 1)2

16r4
n4 +O(n3).
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We can improve on this bound with the following
rectilinear drawing, D, of Lr

n. Since we are describing
a rectilinear drawing it is sufficient to specify the
location of the vertices of D:

•

V1 :=

{(
1 +

1

2j
, 0

)
: 1 ≤ j ≤ n

r

}
;

• for 2 ≤ i ≤ r − 1,

Vi :=
{
(i, j) : 1 ≤ j ≤ n

2r

}
∪
{
(i,−j) : 1 ≤ j ≤ n

2r

}
;

and

•

Vr :=

{(
r +

1

2j
, 0

)
: 1 ≤ j ≤ n

r

}
.

Thus, the first and r-th layer are horizontal and the
remaining layers are vertical. The vertices of D are not
in general position; a small random perturbation of
the vertices of D is sufficient to ensure general position,
while at the same time not changing the number of
crossings.

Theorem 14

cr(D) =
r − 2

4r4
n4 +O(n3).

The leading constant in Theorem 14 is better, for
all r ≥ 4, than the constant obtained by the random
embedding into Hill’s drawing of Kn.

For r = 4, Theorem 14 implies that

cr(D) ≤ 3

1024
n4 +O(n3) ≤ 0.00293n4 +O(n3).

We have found a rectilinear drawing of L4
n with con-

siderable fewer crossings; see Figure 3 for a depiction.

Proposition 15 There exists a rectilinear drawing
D′ of L4

n such that

cr(D′) =
56

32768
n4 +O(n3) ≤ 0.00171n4 +O(n3).

We believe that the bound of Theorem 14 is far from
optimal, and that computing cr(Lr

n) and cr(Lr
n) are

interesting problems.
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Garćıa-Quintero, and C. Hidalgo-Toscano, “An ongo-
ing project to improve the rectilinear and the pseudo-
linear crossing constants.” Preprint.
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Abstract

In a given set S of n points in the plane, how close are
four points of S to be cocircular? We define several
measures to study this question, and present bounds
on this almost-cocircularity in a point set. Algorithms
for cocircularity are presented as well.

1 Introduction

A set S of points in the plane is in general position if
no three points of S are collinear and no four points
are cocircular. Most algorithms in Computational
Geometry require the input points to be in general
position. This simplifies the design of the algorithms
as most degenerate situations arise from collinearity,
but also from cocircularity. It is well known that any
sufficiently large set of points contains three points
that are almost collinear. In particular, a result by
Erdős and Sekeres [1] states that for every set S of 2n

points in the plane, the largest angle defined by points
of S is bounded from below by π · (1− 1/n).

We study how close are four points from S to being
cocircular. We define several measures of cocircularity
in point sets and give bounds on these measures.

On the algorithmic side, the minimum area triangle
defined by points of a given set S, which can be consid-
ered a measure of collinearity, can be found in O(n2)
time using duality [3, 4]. Our goal is to design algo-
rithms to find the tuple of four points of S closest
to cocircularity. We present several O(n3)-time algo-
rithms for this problem. A related, and well studied,
algorithmic problem to our research is computing the
annulus of smallest width that contains S, see e.g. [5]
and references therein.
In Section 2 we define three measures for cocircularity,

∗Email: andrea.de.las.heras@estudiantat.upc.edu.
†Email: g.esteban@uah.es.
‡Email: dgarijo@us.es.
§Email: clemens.huemer@upc.edu.
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A

B

C

D

α

β

π − β

|α− β| |α− (π − β)|

Figure 1: Angles used in Thales cocircularity.

the Thales cocircularity, the Voronoi cocircularity, and
the Determinant cocircularity. We present properties
and differences among them. In Section 3 we show
bounds on the Thales cocircularity, and Section 4 is
mainly devoted to the design of algorithms.

2 Measures of cocircularity

Definition 1 The Thales cocircularity of four points
A,B,C,D is T (A,B,C,D) = minP {min{|α−β|, |α−
(π − β)|}}, where α = ∠ACB and β = ∠ADB, and
the minimum minP is taken over all permutations P
of the four points A,B,C,D. See Figure 1.

The Thales cocircularity is motivated by Thales’
theorem, also known as the inscribed angle theorem.
T (A,B,C,D) is invariant under translation and scal-
ing.

Definition 2 The Determinant cocircularity
D(A,B,C,D) of four points A = (Ax, Ay),
B = (Bx, By), C = (Cx, Cy), D = (Dx, Dy) is
the absolute value of the determinant:

∣∣∣∣∣∣∣∣

Ax Ay A2
x +A2

y 1
Bx By B2

x +B2
y 1

Cx Cy C2
x + C2

y 1
Dx Dy D2

x +D2
y 1

∣∣∣∣∣∣∣∣
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V1(S)A

B

C

D

V2(S)

AB

AD

CD
CB

A

B

C

D

V3(S)

ABD

ABC

ACD

CBD

A

B

C

D

Figure 2: Top: V1(S) of a set of four almost cocircular
points S = {A,B,C,D}. Bottom-left: V2(S), where
for each unbounded cell the closest pair of points of
S is indicated, and the bounded cell has AC as the
closest pair of points. Bottom-right: V3(S), where in
each cell the closest triplet of points of S is indicated.
Centers of circles are depicted as red or blue squares.

The Determinant cocircularity is a very common
tool to check if four points are cocircular: four points
A,B,C,D in the plane lie on a common circle if and
only if D(A,B,C,D) = 0. More general, a determi-
nant test is often used to check if d+ 1 points in Rd

are in general position, since the volume the simplex
defined by d + 1 points is given by a determinant.
D(A,B,C,D) is invariant under translation, but un-
der a scaling by a factor c, the determinant varies in a
factor of c4. We therefore only consider the Determi-
nant cocircularity in Section 4 on algorithms to show
a relation to the 4-SUM problem.

We now introduce another measure of cocircularity.
The order-k Voronoi diagram of a point set S, denoted
by Vk(S), is a partition of the plane into cells that
have the same k closest points of S. The order-1
Voronoi diagram of four cocircular points is composed
of one vertex of degree four and four rays from it, the
vertex being the center of the circle. If we perturb
the points slightly so that the cocircularity disappears,
the Voronoi diagram changes: the vertex of degree
four gets replaced by two vertices of degree three,
connected by a short segment (there are two rays from
each of them). Each vertex is the center of a circle
through three of the four points considered, with none
of them in the interior. See Figure 2, top. Note that
there can be shorter segments in V2(A,B,C,D) or in
V3(A,B,C,D), see Figure 2, bottom.

Definition 3 The Voronoi cocircularity of four points
A,B,C,D, denoted by V(A,B,C,D), is the length of
the shortest edge in all Vk(A,B,C,D) for k = 1, 2, 3.
V(A,B,C,D) is zero if some Vk(A,B,C,D) has a ver-

Figure 3: Green (resp., red) circles pass through the
four most cocircular points of a set S of n = 10 points
according to Voronoi (resp., Thales) measure.

tex of degree four.

V(A,B,C,D) is invariant under translation. Also,
under scaling by a factor c, the length of the shortest
Voronoi edge scales linearly with c.

Definition 4 The Thales/Determinant/Voronoi co-
circularity of a set S of points is the minimum of the
Thales/Determinant/Voronoi cocircularity among all
4-tuples of points of S.

2.1 Properties and differences

All the measures described in the previous section are
zero when the points are cocircular.
We next give a formula for the length of an edge

in a Voronoi diagram of S. Each endpoint of such an
edge is the center of a circle passing through three
points of S, and where two of these three points are
the same for both circles.

Proposition 5 Let A,B,C,D be four points in the
plane, and let CA, CB be the centers of the circles
through C,A,D and C,B,D, respectively. If CA and
CB are on the same side of the line CD, then

|CACB | =
|CD|
2

(
∣∣|cotβ| − |cotα|

∣∣),

where α and β are the angles ∠CAD and ∠CBD,
respectively. Otherwise,

|CACB | =
|CD|
2

(|cotβ|+ |cotα|).

We show in Figure 3 that the measures of Voronoi
and Thales cocircularity of a point set are different, in
the sense that they do not yield the same four-tuple
of points minimizing the cocircularity measure.

3 Bounds on cocircularity

We present two bounds on the measure of Thales
cocircularity.
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Algorithm 1 Detecting cocircularities with inversions

for every point pi ∈ S do
• Invert all points of S\{pi} with respect to the

center pi and radius r = 1.
• Execute as subroutine the sweep-line algorithm

to detect collinearities, see [3].
end for

Proposition 6 For any set S of n points and any
two points A,B ∈ S there exist C,D ∈ S such that
T (A,B,C,D) ≤ π/(n− 3).

Theorem 7 For any set S of n points in con-
vex position, there exist A,B,C,D ∈ S such that
T (A,B,C,D) ∈ O

(
1
n2

)
.

4 Algorithms

Another line of research is to detect these cocirculari-
ties. The decision problem is: Are there four cocircular
points in S? The optimization problem is: Find the
4-tuple of points of S that minimizes the measure.

4.1 Inversions

Proposition 8 There is an O(n3)-time algorithm
that decides whether there exist four cocircular points
in a set of n points, using inversions.

An inversion transformation is determined by two pa-
rameters: The center O and the radius R of inversion.
Two points P, P ′ are inverses if they lie in the same
half-line with origin at O and the Euclidean distances
|OP | and |OP ′| satisfy |OP | · |OP ′| = R2. We need
the following property of inversions:

Property 9 Given a center O and a radius R of in-
version, any circle containing O is inverted into a line.

Thus, if we perform an inversion at a point A that is
cocircular with points B,C,D, then inverting B,C,D
results in three points being collinear. Property 9
allows us to propose Algorithm 1. The cost of the
subroutine is O(n2), and it is executed in a loop with
O(n) iterations. Thus, the total cost is O(n3) time
and O(n) space.
We note that inversions do not preserve a rela-

tionship between the measures of cocircularity and
collinearity. Then, by using inversions, we can only
solve the decision problem of detecting cocircularities.

4.2 Higher order Voronoi diagrams

Proposition 10 The Voronoi cocircularity of a set
S of n points in general position in the plane can be
computed in O(n3) time.

To compute the Voronoi cocircularity of S is equiva-
lent to finding the shortest edge among the diagrams
Vk(S), for k = 1, . . . , n−1. All diagrams Vk(S) can be
obtained in time O(n3) [4, 6], and the number of edges
of a diagram Vk(S) is at most O(k(n−k)). Hence, the
computation can be done in O(n3) time.

4.3 Reduction from 4-SUM

The k-SUM problem asks if a list of n integers contains
k integers whose sum is zero. This is a prominent
problem for k = 3 since there is a large list of problems,
called 3SUM-hard, that have been proved to be as
difficult as 3-SUM; among them, the problem to decide
if three points of a given set are collinear [2].
There are easy quadratic-time algorithms to solve

both the 3-SUM and the 4-SUM problem in the integer
RAM model. As the quadratic-time algorithm for the
4-SUM problem uses hashing, under the real RAM
model there is a similar algorithm without hashing of
complexity O(n2 log n). We prove the following result,
which has as a consequence that the problem to decide
whether four points are cocircular is 4SUM-hard.

Proposition 11 Let [x1, x2, . . . , xn] be a list of n in-
tegers, and let S be the set of n points on the parabola
y = x2, with coordinates (xi, x

2
i ). Then, S contains

four cocircular points if and only if the sum of the
x-coordinates of these four points is zero.

4.4 Cost of the exact problem

We show that to decide whether there exist four co-
circular points in a set of n points can be done in
O(n3 log n) time in the worst case or, using hashing,
in expected O(n3) time1. Both algorithms can find a
solution, thus solving the optimization problem, and
work by storing the radius and center of the circle
defined by each triplet of points, and then detecting
collisions —in the first case, by sorting the circles,
which contributes with the additional factor of log n.

Proposition 12 There is an algorithm working in
expected O(n3) time that decides whether there exist
four cocircular points in a set of n points.

Proof. Suppose S is a set of n points. Our algorithm
uses hashing with separate chaining. In particular, H
represents a hash table of point sets indexed by triples
of points. Let f be the function that, given a set T of
three points, returns the triple (x, y, r) s.t. (x, y) and
r are the center and radius, resp., of the circle defined
by the points in T . We will use the operations:

• Insertion: H.insert(T ) adds information T with
key f(T ) to H.

1The use of hashing was also proposed in
https://cs.stackexchange.com/questions/49316/

largest-set-of-cocircular-points
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Algorithm 2 Exact cocircularity with hashing

given a set S of n points
let H be a hash table of size n3

initialise H with all entries containing ∅
for every distinct T ⊆ S with |T | = 3 do

if H[T ] = ∅ then
H[T ]← T

else
return H[T ] ∪ T

end if
end for
return “no cocircular points”

• Search: H.search(T ) returns ∅ if H does not
contain information for key f(T ) or a set R s.t.
f(T ) = f(R), otherwise.

The method is shown in Algorithm 2. Since insertion
and search have constant average cost, the for loop
and the initialization of H give an O(n3) expected cost
for the whole algorithm. □

Proposition 13 There is an O(n3 log n)-time algo-
rithm that decides whether there exist four cocircular
points in a set of n points.

Proof. In Algorithm 3, the hash table of Algorithm 2
has been substituted by a vector V of size n containing
4-tuples (x, y, r, T ), where n is the number of points;
here T represents a set of three points and (x, y) and
r are the center and radius resp. of the circle defined
by the points in T . We use a stable sorting algorithm
(like mergesort) and apply it to V with respect to the
first, second, and finally third component of the vector.
Since the sorting algorithm is stable, after the three
iterations the entries corresponding to the same circle
are contiguous in V and can be detected in linear
time. The cost of the first and third for loops is O(n3),
while the second for loop has a cost O(n3 log n3) =
O(n3 log n), which is also the cost of Algorithm 3 in
the worst case. □

5 Conclusions

We initiated the study of almost cocircularity in point
sets. We chose measures of cocircularity that we con-
sidered to be very natural, though other measures
could be studied as well. Several questions remain
open, and we plan to continue this line of research.

Open problem 14 Can the decision problem of de-
tecting cocircularities be solved in sub-cubic time?

Open problem 15 Can the bound for the Thales
measure for convex point sets be extended to arbitrary
point sets in general position?

Algorithm 3 Exact cocircularity

given a set S of n points
let V be a size n3 vector of tuples (x, y, r, T )
for reals x, y, r and a three point set T

i← 1
for every distinct T ⊆ S with |T | = 3 do

let (x, y) and r be the center and radius, resp.,
of the circle defined by the points in T

V [i]← (x, y, r, T )
i← i+ 1

end for
for i ∈ {1, 2, 3} do

sort V with respect to component i
end for
for i = 1 to n3 − 1 do

if V [i][j] = V [i+1][j] for each j ∈ {1, 2, 3} then
return V [i][4] ∪ V [i+ 1][4]

end if
end for
return “no cocircular points”

Open problem 16 Find families of point sets that
are “far away” from having four cocircular points.

Acknowledgments. This work was initiated at
the TOPPING workshop in Barcelona, July 2022.
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1 Introduction

In the classical watchman route problem, we aim for
the shortest closed route R within a polygon P , such
that all points of P are visible to some point of R.

Carlsson et al. [1] introduced the m-watchmen
problem as a generalization of this problem: instead
of a single mobile guard, we are givenmmobile watch-
men (with or without a given starting point) and we
aim to find routes for all watchmen, such that all
points in P are visible from at least one route and
such that the sum of the watchman-route lengths is
minimized. Carlsson et al. showed that the problem
is NP-hard in simple polygons and provided a poly-
time algorithm in histograms. Nilsson andWood [2, 3]
gave an O(n2m) time and O(n2) storage algorithm for
spiral polygons without given starting points for the
m watchmen. Nilsson and Schuierer [4] also consid-
ered histograms, but altered the objective to mini-
mizing the length of the longest of the m watchmen
routes, for which they provided an O(n2 log n) algo-
rithm. Also, Mitchell and Wynters [5] considered
the minmax criterion. They gave an O(n4m) algo-
rithm for rectilinear vision in rectilinear monotone
polygons and showed that the problem is NP-hard
for m = 2 in general. Nilsson and Packer [6] gave an
approximation algorithm for two watchmen in sim-
ple polygons. Packer [7] presented heuristics for both
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the minmax and the minsum criterion in polygons
with and without holes. In this paper, we present an
O(n2 ·min{m,n}) time and O(n ·min{m,n}) storage
algorithm to compute the minsum set of m watchmen
routes given their starting points in a Stiegl polygon—
which we define in Section 2. Without starting points
the solution is trivially a single point.

2 Watchmen routes’ properties in Stiegl polygons

A staircase polygon P , as defined in [8], is called a
Stiegl polygon if the floor solely consists of one hori-
zontal and one vertical edge, which we call the base
and the wall of P , respectively. Moreover, we call the
vertex between the base and the wall the origin of P .

Let S be a set of m points in the interior of P
which we consider as starting positions for the watch-
men. We say that point p sees point q if the segment
[p, q] lies in P . In particular, it can partly be on the
boundary of P , hence, one can see along a boundary
edge of P . We denote the x-coordinate of a point p by
x(p), and the y-coordinate by y(p). We furthermore
denote the horizontal and the vertical segment that
goes through point p and lies inside P with h(p), and
v(p), respectively.

Definition 1 For two points p and q, if x(p) ≥ x(q)
and y(p) ≤ y(q), we say that p dominates q.

Observe that, if p dominates q its visibility polygon
is a superset of the visibility polygon of q and that
any watchman can be limited to walk to the right
and downwards from its starting point, because the
bottom-rightmost position on its route w dominates
all other positions on w. Hence:

Lemma 2 A watchman route having starting point
s and rightmost x-coordinate x, and lowest y-
coordinate y can be replaced by the segment [s, (x, y)]
without increasing the minmax or minsum value of
the solution.
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Because all watchmen routes are a segment that the
watchman walks back and forth, for the rest of this
paper, we only compute that length of the segment
and the routes have twice the length we compute.

Lemma 3 If s and s′ are starting points such that
s dominates s′, and w,w′ are two watchmen routes
starting at s and s′, respectively, then w′ will have
zero length in an optimal minsum solution.

Proof. Everything s′ sees is seen by s. If a point p is
unseen both from s and s′, but the watchman starting
at s′ sees it, then the watchman has to cross either
the horizontal or vertical line through s. W.l.o.g., the
horizontal one, h(s). But then the distance from s to
a point that sees p is shorter than that from s′. □

Hence, let S be the set of non-dominated starting
points. S admits a total order, so let the points be
sorted from bottom-left to top-right: s1 < · · · < sm.
Define the x-overlap of two watchmen w and w′ as
the intersection between the projection of w and w′

onto the base. Similarly, define the y-overlap as the
intersection of the projections onto the wall.

Lemma 4 Let W be a set of optimal watchmen
routes and let w,w′ ∈ W be two watchmen routes
with starting points s and s′, respectively. If neither
w nor w′ has length zero, then w and w′ have no x-
and no y-overlap.

Proof. Assume w.l.o.g. s < s′ and that the x-overlap
of w and w′ is non-empty. Let w and w′ be dis-
joint (otherwise, we can shorten the routes). Let
p be w’s endpoint, and p′ be (w′)’s endpoint. Ob-
serve that x(p) < x(p′) as otherwise p would dom-
inate the route w′. Let the overlap be the interval
[x1, x2], then x(s′) = x1. We can shorten w: Sub-
stitute w by [s, (x(s′), y(p))]. The vertical segment
[s′, (x(s′), y(p))] is fully contained in P . Hence, no
convex corner that w saw before is unseen by the
new w and w′. By symmetry, it also holds for the
y-overlap. □

Let P be a Stiegl polygon, and let C be the convex
corners on the ceiling. Enumerate the corners in C
from bottom-left to top-right by c1, . . . , cñ, where ñ =
n−2
2 . For a convex corner ck let hk = h(ck) be the

extension of the horizontal edge at ck, and vk = v(ck)
the extension of the vertical edge at ck.

Lemma 5 Let W be a set of optimal watchmen
routes. Then, for every convex corner ck that is not
seen from S, either extension hk or vk is visited, no
such extension is visited twice, and every watchman
stops at an extension.

Proof. First, we show that every watchman stops
at an extension. Assume w.l.o.g. that watchman w
crosses extension vk in v×k , and that this is the last
extension on its route. Let q be the last point on its
route. When walking along segment [v×k , q], w will not
see any yet unseen convex corner that he did not see at
v×k . Hence, w can be replaced by [s, v×k ], contradicting
the assumption that it was optimal. Next, we argue
that for each ck that is not seen from S, either hk or vk
is visited. Assume w.l.o.g. that watchman w visits vk
and stops there. Then, he can see all of the rectangle
between ck and the origin, but he will not see ck+1.
Let ck+1 be guarded by watchman w′. If w′ moves to
extension hk, he will not see anything that w does not
see yet. In order to see some convex corner cj , j < k,
that is not seen from w, w′ has to walk downwards
to a point below v×k , but then w and w′ have non-
empty y-overlap, contradicting Lemma 4. Finally, no
extension is visited twice since this would mean that
two watchmen have nonempty x- or y-overlap, again
contradicting Lemma 4. □

LetW be a set of watchmen that guard P optimally.
Then the watchmen can be separated into solutions
of subpolygons with bottom and right edges given by
the extensions that are visited by the watchmen, and
where the subpolygons are separated by crates, which
are solely guarded by the starting points inside, and
the watchmen outside, but no watchman moves in-
side these crates. A crate is a Stiegl polygon with
precisely two convex corners on the ceiling that are
not seen by the set of starting points in the crate.
Specifically we define a crate by (a) two unseen con-
vex corners ci and cj where every ck, i < k < j, is
seen, where we cut along the extensions vi, hj , or (b)
one unseen convex vertex cj and a starting point s
where we cut along v(s) and hj , or vj and h(s) de-
pending on the position of s, and s is considered to
be outside the crate. In case there are two starting
points s, s′ with x(ci) < x(s) < x(s′) < x(ci+1), we
only consider the crate cut at v(s), but not the crate
cut at v(s′). Similarly, for two starting points s, s′

with y(cj−1) < y(s) < y(s′) < y(cj), we only consider
the crate cut at h(s′). We say such a crate starts at
i and ends at j. (We do not define a crate if both
cuts pass starting points as then the cuts are auto-
matically visited.) The two unseen convex corners on
the crate’s ceiling are precisely those incident to these
cuts. See Figure 1 for the different types of crates.

3 A dynamic programming algorithm

We describe an algorithm, which iteratively splits
the polygon into two independent subpolygons, called
sub-Stiegl polygons, that are separated by a crate
and which computes the minimum length watchmen
routes in each of them recursively. In each recursion,
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cj

ci

vi

hj

(a) Crate cut at vi
and hj

cj

ci

v(s)

hj

s

(b) Crate cut at v(s)
and hj

Figure 1: The two different types of crates.

it is ensured that the neighboring crates are seen by
forcing watchmen to walk to the base and the wall of
the sub-Stiegl polygon.

3.1 Idea

After cutting out a crate, we are left with two sub-
Stiegl polygons, which need to be guarded. For the
lower sub-Stiegl polygon, we consider the minimum
length of a watchman route guarding it immediately,
and all possible crates that split the subpolygon. The
upper one will be guarded immediately.

Since it is not necessary to walk to the bottom and
the right boundary of the initial polygon P , some pre-
processing is necessary. We do this by cutting off a
horizontal strip along the lower boundary of P , and a
vertical strip along the right boundary of P such that
the interior of the strip is seen by a watchman that
visits the extension along which we cut.

For defining the horizontal strip, consider the first
convex corner c1. If no starting point lies below h1,
this is an extension which needs to be visited in order
to see c1. Therefore we cut off the horizontal strip
below h1. If there is a starting point s below h1, we
consider h(s) as the first extension, and cut off the
horizontal strip below. Note that it does not mat-
ter whether we cut off the strip below the lowermost
starting point or any other starting point as long as we
do not cut off an unseen convex corner on the ceiling,
because the extension will be visited from the starting
point we choose with a watchman of length 0, and the
shortest watchman route to a vertical extension will
never start at any of the lower starting points as they
also lie further to the left. Analogously, we cut off a
vertical strip at the wall of P .

3.2 Sub-Stiegl polygons

In each iteration, the algorithm considers a sub-
polygon of P and computes the optimal solution
within that.

Let Pi,j be the Stiegl polygon that evolves when
cutting off a crate along hi, or along h(s) for any s ∈ S
satisfying y(ci−1) < y(s) ≤ y(ci), and vj , or v(s

′) for
any s′ ∈ S satisfying x(cj) < x(s′) ≤ x(cj+1). This

ci

cj

hi

vj

Pi,j

pi,j

s+i

s−jci+2

cj−1

Figure 2: The sub-Stiegl polygon Pi,j

definition is unique up to the choice of the starting
point that defines the cut. Here, we simply choose the
leftmost possible starting point for vertical cuts, and
the uppermost possible starting point for horizontal
cuts in order to remove a maximal crate. This will not
change the solution in Pi,j because among all possible
starting points s satisfying y(ci−1) < y(s) ≤ y(ci),
the uppermost one has the shortest direct path to the
wall of Pi,j among all starting points below hi, and
the same holds for any possible vertical cut.

Let pi,j be the origin of Pi,j , let Si,j be the subset
of starting points in S that lie in Pi,j (possibly on
the boundary) and let s+i < · · · < s−j be the points
in Si,j . Let furthermore Ci,j be the subset of C that
lies in Pi,j and is not yet seen. See Figure 2 for an
illustration. The goal is to visit both the floor and the
wall of Pi,j with watchmen routes that start at Si,j ,
such that all corners in Ci,j are seen.

Let L(i) be the length of the minimum watch-
men routes in the subpolygon P1,i, starting at the
points S1,i.

Lemma 6 If every convex corner in a sub-Stiegl
polygon Pi,j is already seen by Si,j , then the opti-
mal watchmen routes inside Pi,j consists either of one
watchman starting at s ∈ Si,j who directly moves to
pi,j , or s

+
i who moves vertically down to hi and s−j

who moves horizontally right to vj .

Proof. As all convex corners are already seen, there
is no extension inside Pi,j that needs to be visited by
a watchman. Hence, any watchman will directly walk
to hi or vj and stop there. Moreover, if a watchman
walks towards only one of the extensions, but does
not visit the other one, its shortest route will be the
orthogonal onto the extension. For any such watch-
man route starting neither at s+i nor at s−j , its route

can be replaced by the parallel route starting at s+i
or s−j , respectively. □

We define the uninorm of a polygon Pi,j , denoted
∥Pi,j∥u, as the length of the shortest possible watch-
men routes from which Pi,j is guarded, using starting
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hi

vj

pi,j

(a)

hi

vj

pi,j

(b)

hi

vj

pi,j

(c)

hi

vj

pi,j

(d)

hi

vj

pi,j

(e)

hi

vj

pi,j

(f) Si,j = ∅, Ci,j ̸= ∅
⇒ ∥Pi,j∥u = ∞

Figure 3: Different solutions for sub-Stiegl poly-
gon Pi,j , depending on the starting points Si,j (red
points). The floor and the right wall (blue dashed
lines) need to be visited and all unseen convex cor-
ners Ci,j (green) need to be guarded.

points in Si,j , and that visit both the base and the
wall of Pi,j , and such that the solution is not split
into a set of independent solutions. The value of the
uninorm depends on the unseen convex corners and
the starting points in Si,j (the precise dependency is
given by the (∗)-condition that we define in the last
paragraph of this section),

∥Pi,j∥u =





min
s∈Si,j

∥s, pi,j∥ if Ci,j ̸= ∅, |Si,j | ≥ 1or ¬(∗)

min

{
∥s+i , hi∥+ ∥s−j , vj∥, min

s∈Si,j

∥s, pi,j∥
}

if |Si,j | ≥ 1 or (∗)
∞ if Ci,j ̸= ∅, Si,j = ∅ or Pi,j degenerates.

In case Si,j = ∅ while Ci,j ̸= ∅, then Pi,j cannot
be guarded from its interior. Hence, ∥Pi,j∥u is defined
to be ∞. See Figure 3f. If Pi,j is a degenerate crate
with no area, then again ∥Pi,j∥u =∞.

If every unseen convex corner c ∈ Ci,j satisfies
y(c) < y(s+i ) or x(c) > x(s−j ) then we say that
Pi,j satisfies the (∗)-condition. If Pi,j satisfies (∗), a
watchman starting at s+i who moves vertically down
to hi and a second watchman starting at s−j who
moves horizontally right to vj is a candidate solution
(see Figure 3c–3e). The other candidate solutions are
given by a single watchman moving from a starting
point in Si,j to the origin pi,j (see Figure 3a–3b). The
uninorm is then the minimum over all candidate so-
lutions.

3.3 The algorithm

The total length of the minimum watchmen routes is
computed by the recursion

L(j) =min





∥P1,j∥u or

min
1<i<j−1
i unseen or

∃s:x(ci−1)<x(s)<x(ci)

{
L(i) + min

i<k<j
i,k define a crate

∥Pk,j∥u
}
,

where the current Stiegl polygon is either guarded im-
mediately, using watchmen routes of length ∥P1,j∥u,
or split into two sub-Stiegl polygons where the up-
per one, Pk,j , is guarded immediately. We pre-
compute the uninorm of all sub-Stiegl polygons in
O(n(n+m) log2m) time (per subpolygon Pi,j , query
the closest point to the origin in O(log2m) time us-
ing a dynamic closest point data structure [9]). To fill
out the lookup-table position L(j), the dynamic pro-
gramming algorithm considers all values L(i), i < j,
and corresponding values ∥Pk,j∥u with index k > i,
where i and k define a crate, and computes their sum.
There are less than j values for the start of the crate
i, and at most j − i ends of the crate that need to
be verified since for every convex corner, we only con-
sider the maximum possible crate. As every lookup
takes constant time, we can compute each entry in
O(n · min{m,n}) time. Hence, the algorithm takes
O(n2 ·min{m,n}) time and O(n ·min{m,n}) storage.
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Abstract

We study the structure of faces in Voronoi diagrams
of order k, Vk(S), of sets S of n points in the plane.
While the number of faces of Vk(S) is well known, not
so much is known about the numbers of quadrilaterals,
of pentagons, of hexagons in Vk(S). We present two
extremal point sets and calculate the number of faces
of each type in Vk(S). Among the obtained results, we
show that there exists a set S of n points, where all
bounded faces of Vk(S) are hexagons, for k ≥ (n+3)/2,
and where Vk(S) contains no quadrilateral for 3 ≤ k ≤
(n + 1)/4. Finally, we prove that for no point set S,
Vk(S) can have two adjacent quadrilaterals, for k ≥ 2,
and we present some experimental result.

1 Introduction

We present a study on higher order Voronoi diagrams,
that continues our previous work [3]. Voronoi
diagrams are a very useful tool in diverse disciplines,
see e.g. [1, 11]. Many of their properties were already
obtained by Lee [7]. For a given set S of n points
in general position in the plane, meaning that no
three points of S are collinear and no four points of S
are cocircular, the Voronoi diagram of order k of S,
Vk(S), is a subdivision of the plane into faces such
that points in the same face have the same k nearest
points of S. A face of Vk(S) is denoted by f(Pk)
where Pk is the subset of k points of S that is closest
to every point of this face. It is well known that Vk(S)

has (2k − 1)n − (k2 − 1) −∑k−2
j=0 ej many faces, see

e.g. [7, 3]. Here, ej denotes the number of j-edges of
S. A j-edge is a half-plane defined by the oriented
line through a pair of points of S that contains j
points of S in its interior. The set Pk associated to
an unbounded face can be separated from S \ Pk by a
straight line, and the number of unbounded faces of
Vk+1(S) is ek.
Miles and Maillardet [9] proved that Vk(S) never
contains a triangle for k ≥ 2, also see [3, 8]. We are
interested in the number of quadrilateral faces, of
pentagonal faces, etc., of Vk(S). This question has
been studied extensively for k = 1 and for random
point sets, especially with respect to a homogeneous

Poisson point process, see e.g. [2, 4, 10, 6]. Several of
these results are experimental and are summarized
in [11]. In this setting, the expected number of sides
of a face of Vk(S) is 6 for every 1 ≤ k ≤ n − 2 [10].
In order to study how many faces with i sides, for
i = 4, 5, . . ., are there at least and at most in Vk(S)
among all sets S of n points, and to better understand
the structure of Vk(S), we present two special point
sets S, determine subsets Pk ⊂ S that define a face
f(Pk) of Vk(S) and count the number of i-sided faces.
For the first point set S, studied in Section 2, all
its points are placed very close to the coordinate
axes. Among the properties of Vk(S) for this set, we
point out that Vk(S) contains no quadrilateral for
3 ≤ k ≤ n+1

4 , and, for k ≥ n+3
2 , all the bounded faces

of Vk(S) are hexagons. The second considered point
set S consists of n points on the positive branch of the
parabola y = x2, i.e. on the two-dimensional moment
curve. We describe all faces of Vk(S) precisely.
Interestingly, for every 2 ≤ k ≤ n− 2, Vk(S) contains
exactly one quadrilateral, and for k ≥ 3, all hexagonal
faces are alternating (this is defined in the following).
A similiar study of counting the number of i-sided
faces in a special point set was carried out for Voronoi
diagrams of order 1 in [5], where the points are placed
on the Archimedean spiral.
The i-sided faces of Vk(S) can be classified even more
precisely: each vertex of a face f(Pk) is either the
circumcenter of two points from Pk and one point
from S\Pk, a type II vertex, or of one point from Pk

and two points from S\Pk, a type I vertex [3]. Such
vertices are also called inner and outer vertices [9], or
old and new vertices [7]. It is known that in Vk(S), for
2 ≤ k ≤ n− 2, every bounded face has vertices of type
I and of type II [7]. For k ≥ 2, every quadrilateral has
two vertices of each type, which appear in alternating
order. There exist two classes of pentagonal faces:
Class I are pentagons with three vertices of type I and
two vertices of type II, and Class II are pentagons
with three vertices of type II and two vertices of type
I. We say that a hexagonal face is alternating if its
vertices alternate between type I and type II. See [3]
for some structural results on alternating hexagons
in Vk(S). We then also study the number of faces
according to this classification for type I and type
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II vertices. We will need the edge labeling of Vk(S),
defined in [3]. An edge that delimits a face of Vk(S) is
a (possibly unbounded) segment of the perpendicular
bisector of two points i and j of S. This well-known
observation induces a natural labeling of the edges of
Vk(S) with the following rules:
Edge rule: An edge of Vk(S) from the perpendicular
bisector of points i, j ∈ S has labels i and j, where
label i is on the side (half-plane) of the edge that
contains point i and label j is on the other side.
Vertex rule: Let v be a vertex of Vk(S) and let
{i, j, ℓ} ∈ S be the set of labels of the edges incident
to v. The cyclic order of the labels of the edges
around v is i, i, j, j, ℓ, ℓ if v is of type I, and it is
i, j, ℓ, i, j, ℓ if v is of type II.
Face rule: In each face of Vk(S), the edges that have
the same label i are consecutive, and these labels i
are either all in the interior of the face, or are all in
the exterior of the face.

Using the edge labeling, we prove a structural result
that holds for every set of points S, namely that no two
quadrilaterals can share an edge in Vk(S), for k ≥ 2.
We also describe the labels of the edges of Vk(S) for
the point set on the parabola, studied in Section 3.
Proofs are omitted in this abstract.

2 Points close to the axes

Let S = H ∪ V where H are all the points of the form
Hi = (i, 0) with i ∈ Z,−n ≤ i ≤ n, n ≥ 1, and V are
all of the form Vj = (0, j) with j ∈ Z,−(n + m) ≤
j ≤ −n,m > 1, or n ≤ j ≤ n + m. Hn, H−n are
called extremes of H, and Vn, V−n, Vn+m, H−n−m are
extremes of V . We slightly perturb the points ofH and
V so that the points of S are in general position. The
structure of Voronoi diagrams stays the same when the
perturbation of the points is sufficiently small; values
of k where this perturbation can make a difference
are not considered. Note that |S| = |H| + |V | =
(2n+ 1) + 2m+ 2.

Lemma 1. Every circle C passing through the points
Hi and Hi′ , where i, i

′ ∈ Z, encloses all points Hp,
with −n ≤ i < p < i′ ≤ n. If in addition C passes
through Vj, n ≤ j, then C encloses the points Vℓ such
that n ≤ ℓ < j. Analogously if j ≤ −n, then C
encloses the points Vℓ such that j < ℓ ≤ −n.

Lemma 2. Let C be a circle passing through Hi ∈ H,
Vj and Vj′ ∈ H, j, j′ ∈ Z, where n ≤ j < j′ or
j′ < j ≤ −n. Then, if i > 0, C encloses Hp with
i < p; if i < 0, C encloses Hp with p < i.

2.1 Quadrilaterals

Property 3. V1(S) has |H|+ |V | − 6 = 2(n+m)− 3
quadrilateral faces. Also, if the points of S are on the

coordinate axes, two edges of each quadrilateral are
tangent to the parabolas with focus Hn, H−n, Vn, V−n

and directrix an axis.

To illustrate Property 3, see Figure 1.

Figure 1: All bounded faces of V1(S) are quadrilaterals
except two of them which have |H|+ 2 sides.

Property 4. V2(S) has four quadrilateral faces:
f({Vn, Hn}), f({Vn, H−n}), f({V−n, Hn}) and
f({V−n, H−n}). Moreover, Vk(S) does not have
quadrilateral faces for 3 ≤ k ≤ |V |/2 and k ≥ |H|+ 2.

2.2 Pentagons

It is possible to find a collection of pentagons joined
two by two, sharing an edge. We find this configuration
in the Vk(S), where 2 ≤ k ≤ |V |/2 = m+ 1 (if m = n,
then 2 ≤ k ≤ (|S|+ 1)/4). See Figure 2.

Property 5. In each Vk(S), 2 ≤ k ≤ |V |/2, there
are two chains of pentagons. Further, if Pk is a set of
points associated to a pentagonal face of Vk(S), then
Pk has either a single point from V and an extreme
point of H, or a single point from H and an extreme
point of V , except in the case where k = 2, in which
the two points of P2 cannot be one of them extreme
of V and the other one extreme of H. The number
of pentagonal faces is 2(|V |+ |H|)− 12 in V2(S) and
2(|V |+ |H|)− 4 in Vk(S), for k ≥ 3.

2.3 Hexagons

Property 6. Let f(Pk) be a non-alternating hexago-
nal face of Vk(S). Then, Pk is either:

• A set of k consecutive points of H \ {H−n, Hn}
where 2 ≤ k ≤ |H| − 2.

• A set of k consecutive points of
V \ {V−n, Vn, V−(n+m), Vn+m} where
2 ≤ k ≤ |V |/2− 2.

• A set of k1 consecutive points of H that contains
either H−n or Hn, together with k2 consecutive
points of V \{V−(n+m), Vn+m} that contain either
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V−n or Vn, where k = k1 + k2 ≥ 4, 2 ≤ k1 <
|H| − 1, 2 ≤ k2 < (|V |/2)− 1.

Property 7. Let f(Pk) be an alternating hexagonal
face of Vk(S). Then Pk is either:

• A set of k1 contiguous points of H \ {H−n, Hn}
together with k2 = k − k1 contiguous points
of V \ {V−(n+m), Vn+m} that contain V−n or Vn
where k ≥ 3, 2 ≤ k1 < |H| − 2, k2 < (|V |/2)− 1.

• A set of k2 contiguous points of
V \ {V−n, Vn, V−(n+m), Vn+m} together with
k1 = k − k2 contiguous points of H that contain
H−n or Hn, where 2 ≤ k2 < |V |/2− 2, k1 < |H|.

Figure 2: Hexagonal and pentagonal faces in V4(S).

Property 8. The numbers of hexagons in Vk(S), for
2 ≤ k ≤ min{|H| − 2, |V |/2− 2} are:

k = 2 2n+ 2m− 6
k = 3 6n+ 6m− 21
k ≥ 4 (|S| − 3)(2k − 3)− 3k2 + 4k − 6

Property 9. If |V | ≤ |H| and |H|+ 2 ≤ k < |S| − 1,
then all bounded faces of Vk(S) are hexagons. More-
over, if the set Pk associated to the bounded face f(Pk)
of Vk(S) does not contains an extreme point of H, then
f(Pk) is an alternating hexagon.

3 Points on the positive branch of a parabola

Let S be the ordered set of points of the form Qi =
(xi, x

2
i ), where xi ∈ R, xi > 0, i ∈ N, 1 ≤ i ≤ n and

Qi < Qj if and only if i < j and xi < xj . We
count the bounded faces Vk(S), which can only be a
quadrilateral, pentagons and alternating hexagons.

Lemma 10. Every circle C passing through the points
Qi, Qj and Qℓ, with i < j < ℓ, encloses all points Qm

with m < i or j < m < ℓ.

3.1 Quadrilaterals

Property 11. Vk(S) with 2 ≤ k ≤ n − 2 has
a unique quadrilateral face f(Pk). The two labels

at the interior of f(Pk) are k − 1 and k + 1 with
Qk−1, Qk+1 ∈ Pk and the two labels at the exterior
of f(Pk) are k and k + 2 with Qk, Qk+2 /∈ Pk. Also,
Pk = {Q1, Q2, ..., Qk−2, Qk−1, Qk+1}.

3.2 Pentagons

There exists two classes of pentagonal faces with both
types of vertices: Class I are pentagons with three
vertices of type I and two vertices of type II and Class
II are pentagons with three vertices of type II and two
vertices of type I.

Property 12. Let f(Pk) be a class I pentagonal face
of Vk(S) with 2 ≤ k ≤ n − 2, and let i and j be the
two labels at the interior of f(Pk) with i < j and
Qi, Qj ∈ Pk. Then, i = k − 1, k + 2 ≤ j ≤ n − 1
and the three labels at the exterior of f(Pk) are k,
j − 1 and j + 1, with Qk, Qj−1, Qj+1 /∈ Pk. Also,
Pk = {Q1, Q2, ..., Qk−2, Qk−1, Qj}.
Property 13. Let f(Pk) be a class II pentagonal face
of Vk(S) with 3 ≤ k ≤ n − 3, and let i, j, ℓ be the
three labels at the interior of f(Pk) with i < j < ℓ
and Qi, Qj , Qℓ ∈ Pk. Then, 1 ≤ i ≤ k − 2, j = i+ 2,
ℓ = k + 1 and the three labels at the exterior of f(Pk)
are i+ 1 and k + 2, with Qi+1, Qk+2 /∈ Pk. Also, the
points Qm with m < i or i + 2 < m < k + 1 are the
remaining points of Pk.

Property 14. Vk(S) with 2 ≤ k ≤ n− 2, has exactly
(n− k − 2) class I pentagonal faces.

Property 15. Vk(S) with 3 ≤ k ≤ n− 3, has exactly
(k − 2) class II pentagonal faces.

3.3 Hexagons

Property 16. Let f(Pk) be an alternating hexagonal
face of Vk(S) with 3 ≤ k ≤ n − 3, and let i, j and
ℓ be the three labels at the interior of f(Pk) with i <
j < ℓ and Qi, Qj , Qℓ ∈ Pk. Then, 1 ≤ i ≤ k − 2,
i+ 2 ≤ j ≤ n − k + i, ℓ ≤ n − 1 and the three labels
at the exterior of f(Pk) are i + 1, j − 1 and ℓ + 1
with Qi+1, Qj−1, Qℓ+1 /∈ Pk. Also, the points Qm with
m < i or j < m < ℓ are the remaining points of Pk.

Property 17. Vk(S) with 3 ≤ k ≤ n− 3, has exactly
(k − 2)(n− k − 2) alternating hexagons.

4 Experimental and theoretical results

Previous properties have been additionally verified
computationally. For this, a generator algorithm
for the order-k Voronoi diagram was implemented
in Python, so n-sided bounded faces can be counted.
This code was used to seek for more general properties.
We generated 1000 sets of n uniformly distributed ran-
dom points on the unit square in general position for
each n from 4 to 20. We obtained all order-k Voronoi
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diagrams for these sets. Then, minimum, maximum
and mean of the n-sided bounded faces for all of the
same order Voronoi diagrams for the sets with the
same number of points were computed. We get tables
like the ones below shown for n = 10.

n = 10 Quadrilateral Pentagons Hexagons

k = 1
min= 0
max= 5
mean= 1.379

min= 0
max= 5
mean= 1.464

min= 0
max= 3
mean= 0.684

k = 2
min= 0
max= 6
mean= 3.077

min= 0
max= 12
mean= 4.177

min= 0
max= 10
mean= 2.988

k = 3
min= 0
max= 8
mean= 3.957

min= 0
max= 12
mean= 4.644

min= 0
max= 11
mean= 4.16

k = 4
min= 0
max= 9
mean= 4.092

min= 0
max= 11
mean= 4.719

min= 0
max= 13
mean= 4.342

k = 5
min= 0
max= 10
mean= 3.726

min= 0
max= 12
mean= 4.249

min= 0
max= 11
mean= 3.908

k = 6
min= 0
max= 7
mean= 3.007

min= 0
max= 10
mean= 3.432

min= 0
max= 9
mean= 3.017

k = 7
min= 0
max= 5
mean= 2.048

min= 0
max= 8
mean= 2.328

min= 0
max= 7
mean= 1.866

k = 8
min= 0
max= 3
mean= 0.978

min= 0
max= 5
mean= 1.190

min= 0
max= 3
mean= 0.615

n = 10
Class I
Pentagons

Class II
Pentagons

Alternating
Hexagons

k = 1
min= 0
max= 0
mean= 0

min= 0
max= 0
mean= 0

min= 0
max= 0
mean= 0

k = 2
min= 0
max= 12
mean= 4.177

min= 0
max= 0
mean= 0

min= 0
max= 0
mean= 0

k = 3
min= 0
max= 9
mean= 3.335

min= 0
max= 6
mean= 1.309

min= 0
max= 7
mean= 1.081

k = 4
min= 0
max= 7
mean= 2.678

min= 0
max= 7
mean= 2.678

min= 0
max= 8
mean= 1.304

k = 5
min= 0
max= 6
mean= 1.983

min= 0
max= 7
mean= 2.266

min= 0
max= 7
mean= 1.304

k = 6
min= 0
max= 5
mean= 1.241

min= 0
max= 7
mean= 2.190

min= 0
max= 7
mean= 1.216

k = 7
min= 0
max= 3
mean= 0.534

min= 0
max= 6
mean= 1.793

min= 0
max= 4
mean= 0.489

k = 8
min= 0
max= 0
mean= 0

min= 0
max= 5
mean= 1.190

min= 0
max= 0
mean= 0

Note that, since for k = n− 1 the Voronoi diagram
Vk(S) has no bounded faces, there is no row in the

tables for k = 9 as all the values are always 0.
With these tables we try to find general proper-

ties for the number of quadrilaterals, pentagons, and
hexagons in higher order Voronoi diagrams. We proved
the next results for the bounded faces of the Voronoi
diagrams of any set of points in general position.

Property 18. Only in Voronoi diagrams of order one,
it is possible to find two quadrilaterals sharing an edge.

Property 19. Vk(S) with k ≥ 2, cannot have a
bounded face with only two type II vertices and sharing
a type I vertex with two Class II pentagonal faces.
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Abstract

In this paper, we show that the VC dimension of
half-guarding a terrain is exactly 2 or 3, depending
on certain assumptions. We also show that the VC
dimension of half-guarding a monotone polygon is
exactly 4.

1 Introduction

A full guard is a guard that can see 360°. In our
paper, we define a half guard as a guard that sees
180° and only sees to the right. VC dimension is a
measure of the complexity of some set system. It has
been studied by researchers for many variants of the
art gallery problem. Guarding simple polygons with
full guards has a VC dimension between 6 and 14 [1].
Guarding monotone polygons (simple polygons) with
full guards where guards are limited to being on the
boundary of the polygon was shown to be exactly 6
in both types of polygons [2, 3]. The structure half
guards add to the art gallery problem is interesting
because the difference, as compared to, full guards, is
not trivial. For example, convex polygons have a VC
dimension of 1 with half guards despite having a VC
dimension of 0 with full guards. Monotone polygons,
where all guards and viewpoints are located on the
boundary, have a VC dimension of 4 with half guards
despite having a VC dimension of 6 with full guards.

A set of guards G in P is shattered if for every
Gs ⊆ G, there exists a point that is seen by the guards
in Gs and by no guards in G\Gs. With half guarding,
we show that the VC dimension is exactly 4. The
terrain guarding problem with full guards has a VC
dimension of exactly 4 [4]. With half guarding, we show
that the VC dimension is exactly 2 or 3, depending
on certain assumptions.

Notation: Let p < q mean that point p is to the
left of q, i.e. the x coordinate of p.x < q.x. With
half guarding a polygon (resp. terrain), a point p
sees a point q if the line segment connecting p and q
does not go outside of the polygon (resp. below the
terrain) and p.x ≤ q.x. Let p and q be two points such

∗Email: krohne@uwosh.edu
†Email: apahlow22@alumni.uwosh.edu

that p.x < q.x, then [p, q) denotes every point in the
polygon between p and q (including the vertical line
containing p but excluding the vertical line containing
q). Let l be the leftmost point of the polygon and let
r be the rightmost point of the polygon. The ceiling
(resp. floor) denotes every boundary point in [l, r] as
we travel clockwise (resp. counterclockwise) from l to
r. We define viewpoint as a point that is exactly seen
by a subset of the guards. For example, the viewpoint
vp(AC) is a point in the polygon that is seen by guards
A and C but is not seen by any other guards.

2 VC dimension of terrains

We start by discussing the VC dimension of terrains
with regards to half guards. The VC dimension of a
terrain with regards to half guards depends on if a
point on the terrain can be considered both a guard
and a viewpoint. If guards and viewpoints must be
disjoint, then the VC dimension is 2. If a point on
the terrain can be both a guard and a viewpoint, then
the VC dimension is 3. Figure 1 shows an example of
a terrain being shattered with 2 guards. We use the
standard order claim without proof.

Claim: Let A,B,C,D be 4 points on a terrain with
A.x < B.x < C.x < D.x. If A sees C and B sees D,
then A must see D.

Figure 1: A terrain shattered by 2 half guards.

Theorem 1 If a terrain guarding problem does (resp.
does not) allow a guard and a viewpoint to be the same
point, then the VC dimension of a terrain is exactly 3
(resp. 2).
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Proof. We will first consider the case where guards
and viewpoints cannot be located at the same point.
Let A,B and C be guards such that A.x < B.x <
C.x. Assuming that a guard and viewpoint cannot
be the same point, the viewpoints that are seen by
C must be strictly to the right of C. It follows that
B.x < C.x < vp(BC).x and B.x < C.x < vp(AC).x.
If vp(BC).x < vp(AC).x, then we have B.x < C.x <
vp(BC).x < vp(AC).x. By the order claim, B sees
vp(AC), a contradiction. If vp(AC).x < vp(BC).x,
then A.x < B.x < vp(AC).x < vp(BC).x. By the
order claim, A sees vp(BC), a contradiction.

Next we consider the VC dimension of terrains where
a guard and a viewpoint can be at the same point.
In this case, the VC dimension is 3. We achieve a
lower bound of 3 by giving an example of a terrain
shattering 3 guards in Figure 2.

Figure 2: A terrain shattered by 3 half guards. In this
example, C and vp(BC) are the same point.

We will show that it is impossible for such a terrain
to have a VC dimension of 4. Let A,B,C,D be the
guards of this polygon with A.x ≤ B.x ≤ C.x ≤ D.x.
Consider the following cases:

1. If the viewpoint vp(AC).x < vp(BD), then A.x <
B.x < vp(AC).x < vp(BD).x. By the order claim
using A,B, vp(AC), vp(BD), A sees vp(BD).

2. If the viewpoint vp(BD).x < vp(AC), then B.x <
C.x < vp(BD).x < vp(AC).x. By the order claim
using B,C, vp(BD), vp(AC), B sees vp(AC).

□

3 VC dimension of monotone polygons

We show that the VC dimension of half guarding a
monotone polygon is exactly 4. We obtain the lower
bound for monotone polygons by giving an example
of a monotone polygon being shattered by 4 guards as
seen in Figure 3. We now show that the 5 guards can-
not be shattered with a case analysis. A few cases are
shown in the paper with the remaining ones omitted
due to lack of space. We use the following lemma:

Figure 3: Polygon shattered by 4 half guards.

Figure 4: Lemma 2 where s, t and u are on the ceiling.

Lemma 2 Let s < t < u < v where s, t, u are on the
same side of the polygon, s sees u, t sees v, and s does
not see v. The opposite side of the polygon must block
s from seeing v.

Proof. W.l.o.g., assume s, t and u are on the ceiling.
If a point p′ on the ceiling is used to block s from v
such that s.x < p′.x < u.x, then s is blocked from u.
If a point p′ on the ceiling is used to block s from v
such that t.x < p′.x < v.x, then t is blocked from v. If
the ceiling wraps underneath v to block s from v, then
the polygon is not monotone. Therefore, if s does not
see v, the floor must block it. □

Figure 5: Lemma 3 where p is on the ceiling and the
floor blocks p from q.

Lemma 3 Let p and q be two points in the polygon
and let p < q. If p is blocked from q using the side
opposite p, then no point in [l, p] can see q.

Proof. W.l.o.g, assume that p is on the ceiling and
the floor is blocking p from q. Let o be some point to
the left of p. The −→oq ray lies in between the −→pq ray
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and the floor. If this were not the case, then p would
have blocked o from q. If the floor blocks p from q, the−→oq ray must also go through the floor and therefore, q
must also be blocked from o. □

Lemma 4 Let s < t < u, where t and u are on
opposite sides of the polygon, s sees u, and t does not
see u. It must be that t cannot see any point in [u, r].

Proof. Assume, w.l.o.g., that t is on the floor. Note
that t cannot be blocked from u using the ceiling since
by Lemma 3, s would not see u. Thus, t must be
blocked from u using the floor. Let v denote some
point to the right of u. If the

−→
tv line crosses above

u, then the ceiling will block t from v. If the
−→
tv line

crosses below u, then the floor will block t from v since
the floor is blocking t from u. □

Corollary 4.1 Let t < u, t is on the floor (resp. ceil-
ing), u is on the ceiling (resp. floor), and the floor is
blocking t from seeing u. It must be that t cannot see
any point in [u, r].

Figure 6: Visualization of Lemma 4.

We obtain an upper bound of 4 by showing that it
is impossible to shatter 5 half guards in a monotone
polygon. The upper bound proof is obtained by break-
ing the problem up into different cases. Unfortunately,
every viewpoint, when considered by itself without
placing any other viewpoints, can be placed when
there are 5 guards. However, depending on the loca-
tion of the guards, certain viewpoint combinations are
impossible. We provide a few cases below. Consider
a monotone polygon with 5 guards: {A,B,C,D,E}
such that A.x ≤ B.x ≤ C.x ≤ D.x ≤ E.x.
Case 1: Let {A,C} be on the floor (resp. ceiling)

and {B,D} be on the opposite side. The position
of E does not matter (with respect to the ceiling or
floor). We show that it is impossible to place the
points vp(BCE) and vp(ADE). Note that vp(BCE)
and vp(ADE) must be to the right of, or on the same
vertical line, as E.

Case 1a: If vp(BCE) is on the ceiling to the left of
vp(ADE), or on same line as vp(ADE), then consider
how B must be blocked from vp(ADE). The B guard
cannot be blocked from vp(ADE) using the ceiling be-
cause of Lemma 2 where s = B, t = D,u = vp(BCE)

and v = vp(ADE). The floor must then be used
to block B from vp(ADE). By Lemma 3, using
o = A, p = B, q = vp(ADE), the A guard would
not be able to see vp(ADE). Therefore, B cannot
be blocked from vp(ADE). This case is illustrated in
Figure 7.
Case 1b: If vp(ADE) is on the ceiling to the left

of vp(BCE), or on same line, then consider how C is
blocked from seeing vp(ADE). This case is illustrated
in Figure 8. Similar to the previous argument, if C is
blocked from seeing vp(ADE) using the floor, then by
Lemma 4 using s = A, t = C, u = vp(ADE), v =
vp(BCE), C cannot see vp(BCE). If the ceiling
blocks C from seeing vp(ADE), then by Lemma 3
using o = A, p = C, q = vp(ADE), A is blocked from
seeing vp(ADE).

Figure 7: Visualization of Case 1a.

Figure 8: Visualization of Case 1b.

Case 1c: If vp(BCE) is on floor to the left of
vp(ADE), or on same line as vp(ADE), then con-
sider how D must be blocked from vp(BCE). If
the ceiling blocks D from seeing vp(BCE), then
D does not see vp(ADE) by Corollary 4.1 when
t = D,u = vp(BCE), v = vp(ADE). If the floor
blocks D from seeing vp(BCE), then by Lemma 3
with o = C, p = D, q = vp(BCE), C cannot see
vp(BCE).
Case 1d: If vp(ADE) is on floor to the left of

vp(BCE), or on same line as vp(ADE), then consider
how B is blocked from vp(ADE). If the floor blocks
B from vp(ADE), then by Lemma 3 with o = A, p =
B, q = vp(ADE), A does not see vp(ADE). If the
ceiling blocks B from vp(ADE), then by Corollary 4.1
with t = B, u = vp(ADE), v = vp(BCE), B does not
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see vp(BCE).
Therefore, {A,C} and {B,D} cannot be on opposite

sides of the polygon. We provide 1 more case.
Case 2: In this case, {A,E} are on the floor (resp.

ceiling) and {B,C,D} are on the opposite side. In
this case, it is impossible to place both vp(BDE) and
vp(ACD).

Case 2a: The viewpoint vp(ACD) is on the ceiling
to the left of vp(BDE) or on same line as vp(BDE).
We consider how C is blocked from vp(BDE). We
can’t block C from vp(BDE) with the ceiling by
Lemma 2, where s = C, t = D,u = vp(ACD), v =
vp(BDE). If we try to block C from vp(BDE) using
the floor, we end up blocking B from vp(BDE) by
Lemma 3 with o = B, p = C, q = vp(BDE)).

Figure 9: Visualization of Case 2a.

Case 2b: The viewpoint vp(BDE) is on the ceiling
to the left of vp(ACD), or on same line as vp(ACD).
By Lemma 2 with s = B, t = C, u = vp(BDE), v =
vp(ACD), we must use the floor to block B from
vp(ACD). However, if we use the floor to block B
from vp(ACD), then by Lemma 3 with o = A, p =
B, q = vp(ACD), the A guard is blocked from seeing
vp(ACD).
Case 2c: The viewpoint vp(ACD) on floor to the

left of vp(BDE). In this case, we consider how B is
blocked from vp(ACD). If the ceiling blocks B from
vp(ACD), then by Corollary 4.1 with t = B, u =
vp(ACD), v = vp(BDE), B does not see vp(BDE).
If the floor blocks B from vp(ACD), then by Lemma
3 with o = A, p = B, q = vp(ACD), the A guard does
not see vp(ACD).

Figure 10: Visualization of Case 2c.

Case 2d: The viewpoint vp(BDE) is on floor to
the left of vp(ACD). In this case, consider how C is
blocked from seeing vp(BDE). If the floor blocks C
from seeing vp(BDE), then by Lemma 3 with o =
B, p = C, q = vp(BDE), B would not see vp(BDE).
If the ceiling blocks C from vp(BDE), then by Corol-
lary 4.1 with t = C, u = vp(BDE), v = vp(ACD), C
would not see vp(ACD).

These cases are just a few examples of how to show
the VC dimension of a monotone polygon with half
guards is exactly 4. The 25 = 32 cases that we consider
are the following: {A,C} are on the same side and
{B,D} are on the opposite side (4 cases), {A,E} are
on some side and {B,C,D} are on the opposite side (2
cases), {C,E} are on the same side and {A,B,D} are
on the opposite side (2 cases), there are any 4 guards
that are on the same side (12 cases), {A,B} are on
the same side and {C,D} are on the opposite side (4
cases), {A,D} are on the same side and {B,C} are
on the opposite side (4 cases), {B,E} are on the same
side and {A,C,D} are on the opposite side (2 cases),
and {A,B,C} are on the same side and {D,E} are
on the opposite side (2 cases).

These cases give us the following theorem.

Theorem 5 The VC dimension of half guarding a
monotone polygon is exactly 4.

4 Conclusions

We show the VC dimension exactly for several vari-
ants of half guarding in the art gallery problem. The
VC dimension for half guarding a terrain is 2 or 3 de-
pending on the assumption of whether or not guards
and viewpoints can occupy the same space. The VC
dimension for monotone polygons with half guards is
exactly 4.

Open problem 6 What is the VC dimension of half-
guarding other variants of the art gallery problem, for
example: simple polygons, spiral polygons, orthogonal
polygons, etc?
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Comparing box and disk bichromatic discrepancy
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Abstract

In this paper we consider the problem of computing the
discrepancy of a bichromatic point set by using boxes
and disks and comparing the respective algorithmic
complexities.

1 Introduction

Let S be a bichromatic d-dimension n-point set. Let
R and B be a the set of red and blue points from S
respectively, so S = R∪B. The colouring of the points
in S is expressed in the mapping χ : S −→ {−1, 1},
where blue points are negative and red points are
positive. Let us define the bichromatic discrepancy of
a geometric shape SH:

∆(SH) =
∑

x∈(SH∩S)

χ(x).

This is, the discrepancy of the shape is the num-
ber of red points minus the number of blue points.
The maximum bichromatic discrepancy of a family of
shapes SH ∈ F is defined as:

Max∆(S, χ,F) = max
SH∈F

|∆(SH)|.

The main goal of this paper is to compare existing
algorithms and approaches to solve the problem of
computing the maximum bichromatic discrepancy of
the set S using various families of shapes. The shapes
considered are boxes and disks, in various dimensions.

Applications of computing discrepancy are present
in several areas of computer science. Three major
ones are mentioned in the introduction of the paper
by Dobkin et al. [9] are the Agnostic PAC-Learning,
ϵ-Approximations, and Sampling Patterns in Graphics.

Sampling patterns are used in ray-tracing for ren-
dering digital images. If the pattern is ill designed it
yields visible biasing artefacts. Computing the boxes
discrepancy in 2d is related to the design of good
patterns.

∗Email: nicolau.oliver@estudiantat.upc.edu
†Email: carlos.seara@upc.edu. Supported by project

PID2019-104129GB-I00/ MCIN/ AEI/ 10.13039/501100011033.

If instead of pixels we instead assume more circular
shaped receptors, as the human eye’s photo-receptors
roughly are, and furthermore take into account other
optical effects natural to human eyesight, it suggests
studying discrepancy on disks instead of boxes.

There is a lot literature about discrepancy, and the
books by Matousek [13] and Chazelle [5] cover in depth
the topic. For related results see Bereg et al. [4] and
Dı́az-Báñez et al. [6, 7].

2 Boxes discrepancy

We first introduce the approach presented by Dobkin
et al. [9], and Gunopulos [11], to compute the boxes
bichromatic discrepancy in 1d and 2d.

2.1 1d : Intervals

As boxes and disks both define intervals in the 1-
dimension (1d) case, the results from Dobkin et al. [9]
apply to both shapes. We specially want to highlight
some results for the 1d case, as they provide the proper-
ties that are fundamental for the algorithms in further
sections.

Lemma 1 [9] Given an interval [l, r] on our 1d setting,
the discrepancy ∆([l, r]) = ∆([l,m]) +∆([m, r]) where
m ∈ [l, r] and m /∈ S. See Figure 1.

l rm

Figure 1: Example points in 1d with discrepancy 4.

This allows us to divide and conquer the computa-
tion of the discrepancy.

Lemma 2 [9] Given an interval [l, r] on our 1d setting,
let the maximum discrepancy interval be [a, b] ∈ [l, r].
Then for any m ∈ [a, b] the interval [a,m] maximises
the discrepancy among all intervals in [l,m] that have
m as the right endpoint. Analogously, for the discrep-
ancy among all intervals in [m, r] with m as the left
endpoint.
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Lemma 2 introduces the connection between com-
puting the maximum discrepancy in intervals with
some fixed endpoints and computing the maximum
discrepancy among all intervals. It specifically implies:

Observation 3 [9] Given the maximum discrepancy
of two consecutive intervals [l,m] and [m, r] with the
fixed endpoint m, we can compute the maximum dis-
crepancy for their union interval [l, r].

From Observation 3 we can intuitively see how
we can build a segment tree of the points to repre-
sent all possible intervals. Computing this tree takes
O(n log n) time and allows us to solve the static 1d
maximum discrepancy.

But this tree also allows for a dynamic algorithm.
Updates need only to traverse a O(log n)-LENGTH
path from the new leaf (or deleted leaf) to the root
of the tree. This allows us to solve the dynamic 1d
maximum discrepancy.

Theorem 4 [9] The maximum discrepancy for inter-
vals in 1d can be computed in O(n log n) time (linear
if input is sorted) and O(n) space. Computing up-
dates after insertion/deletion of a point can be done
in O(log n) time and O(n) space.

2.1.1 Axis-parallel boxes

The key strategy to tackle the 2d setting, is to find
projections back to 1d. The axis-parallel boxes is a
perfect example.

Fix the y-coordinates of the axis-parallel box. We
have Θ(n2) pairs to choose from, and each of them
defines a horizontal strip. Because we fixed them, the
y-coordinates of the points inside the strip become
irrelevant. See Figure 2.

Lemma 5 [9] Computing the maximum discrepancy
box in a fixed horizontal strip is equivalent to finding
the maximum discrepancy interval of the points inside
the strip projected onto the x-axis.

ytop

ybottom

Figure 2: Discrepancy with boxes in 2d.

These projections allow us to use the previous results
to design algorithms. Let S again be the input set of
n points. An outline of the algorithm step by step is:

1. Sort S by y-coordinate1, obtaining the order
p1, . . . , pn.

2. For each pi do:

(a) Initialise the segment tree with only pi, this
represents the strip that only contains pi.

(b) For each pj such that i < j do:

i. Update the segment tree by inserting pj .

ii. If the new maximum discrepancy is
larger than the one seen so far, record
the box.

Step 1 has cost O(n log n) time. Step 2.b.i has cost
O(log n) time. Step 2.a and 2.b.ii have cost O(1) time.
Both loops 2 and 2.b have O(n) iterations, so the
total complexity is O(n2 log n) time and O(n) space.
This algorithm is straightforward to extend to higher
dimensions, for each new dimension the “strip” is
determined by two extra points, so the complexity is
O(n2(d−1) log n) time and O(n) space.
This can be improved by applying divide and con-

quer to the y-axis, after sorting the input by both
coordinates as a pre-computation. This and more
improvements where shown by Barbay et al. [2] to
result in an O(n2) time algorithm, or even faster un-
der some parametrizations of the input. They extend
this approach to higher dimensions, resulting in an
O(nd) time algorithm. This running time is tight up to
subpolynomial factors, as proven by Backurs et al. [1].

3 Disk discrepancy

Disks are equivalent to intervals in 1d, but disks in
2d do not satisfy the analogous of Lemma 1. There is
no easy way to decompose a disk into smaller disks.
Analogously, Lemma 2 doesn’t hold.

Nevertheless, we can still apply the key strategy
presented in Subsection 2.1.1, finding projections back
to 1d. The projection we present is equivalent to the
one used by Bereg et al. [3].
For pi, pj ∈ S consider all disks that pass through

them. All their centers lie on the bisector of the
segment pipj . See Figure 3.

Definition 6 The oriented angle αij
k ∈ [−π, π] of a

point pk ∈ S with respect to pi, pj ∈ S is the supple-
mentary angle of ∠pipkpj . It is positive if pk is to the
right of the directed line −−→pipj , otherwise negative.

If we order the points in S by the oriented angle, the
furthest left point in Figure 3 has the smallest oriented
angle. The furthest right point has the largest oriented
angle. Points close to segment pipj have oriented angle
close to 0.

1The following for loops iterate in this order.
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O

pj

pi

pk

pq

Figure 3: Discrepancy with disks in 2d. Oriented angle
α is negative, and oriented angle β is positive.

Traversing all the points pk ∈ S by their oriented
angle αij

k = ±(π−∠pipkpj) can be visualised as sliding
the center O of the disk over the bisector from left to
right.

Thus, for fixed points pi, pj ∈ S, let

Λij = [αij
1 , . . . , α

ij
k , . . . , α

ij
n−2]

be the list (in fact, a multi-set) of oriented angles of
the points pk with respect to pi, pj . Each α

ij
k retains

the colour of the point it represents.

Definition 7 The inverse of an angle αij
k is:

inv(αij
k ) =

{
if αij

k < 0 : swap color(π − |αij
k |)

else αij
k .

Analogously, the inverse of a list

inv(Λij) = [ ∀k : inv(αij
k ) ]

is just the list of the inverse of its elements.

In the circular discrepancy, the intervals of angles
must be of the form [β − π, β]Λij where β ∈ [0, π].
This interval represents the disk through pi, pj with
inscribed angle β, where β is positive; so it lies to
the right of −−→pipj . Let [0, β]inv(Λij) be the same inter-
val/disk over the inverse angles of Λij .

Lemma 8 The disk discrepancy of Λij is equal to a
constant with respect to β, plus the interval discrep-
ancy of the inverse angles with fixed endpoint 0.

∆([β − π, β]Λij ) = ∆([−π, 0]Λij ) + ∆([0, β]inv(Λij)).

Definition 9 The projection of a list of angles is:

P(Λij) = [ ∀k : {αij
k ∪ inv(α

ij
k )} ].

In few words, the projection is duplicating the nega-
tive angles with its inverses. So a negative red angle is
duplicated by inserting its positive value in blue. As a
consequence of Lemma 8 we have the following result.

Theorem 10 The disk discrepancy of a list of angles
is equal to the interval discrepancy of its projection,
with the restriction of containing the interval [−π, 0],

∆([β − π, β]Λij ) = ∆([−π, β]P(Λij)), β ∈ [0, π].

The algorithm for circular discrepancy starts by
fixing two points. We have O(n2) pairs to choose from,
and each of them defines a bisector. Because we fixed
the points, the remaining points can be sorted by their
oriented angle. These angles are then projected via P .
Using this projection, the algorithm is straightforward:

1. For each pair (pi, pj) ∈ S×S such that i ̸= j do:

(a) Compute the list of oriented angles Λij of
all points with respect to pi, pj .

(b) Compute the projection P(Λij).

(c) Compute the maximum discrepancy interval
with the restriction:

∆(P(Λij)) = [−π, β], β ∈ [0, π].

To compute Step 1.c it is enough to modify slightly
the algorithm for interval discrepancy.

Steps 1.a and 1.b have cost O(n) and Step 1.c has
cost O(n log n) time. The Loop 1 is O(n2) iterations
so the total complexity is O(n3 log n) time and O(n)
space. This is equivalent to the complexity of the
algorithm presented by Bereg et al. [3].

In comparison to this approach, a faster and more
general algorithm exists by Dobkin and Eppstein [8].
Their approach extends to shapes bounded by alge-
braic curves, such as circles and ellipses in 2d. Lifting
the points to the paraboloid, in order to compute the
discrepancy inside the disks they compute the lifted
points below the corresponding plane, using the topo-
logical sweep algorithm by Edelsbrunner et al. [10].
Their resulting complexity is O(n3) time for disks, and
O(n5) time for ellipses.

We think that finding the maximum discrepancy
disk in 2d could be 4-SUM hard. The reduction can
be done using Proposition 11 in Heras et al. [12], and
Theorems 6, 7 and Lemma 12 in Bereg et al. [4].

pi

pj

pk

αi

pl

Ci
j,k,l

Figure 4: Generalization of the oriented angle in 3d.
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It is straightforward to generalise to d > 2 the
algorithm we present above and the one by Dobkin and
Eppstein [8]. See Figure 4.The respective complexities
are O(nd+1 log n) and O(nd+1) time and O(n) space.

4 Unoriented boxes

In contrast to disks in 2d, boxes with arbitrary orien-
tations in 2d can be decomposed into smaller boxes of
that same orientation. Again this impacts positively
the complexity of the algorithm.

Lemma 11 Computing the maximum discrepancy
box in a fixed strip with orientation v⃗ is equivalent to
finding the maximum discrepancy interval of the points
inside the strip projected onto a line with direction v⃗.

This is just a generalisation of Lemma 5, and allows
us to reuse the results for axis parallel boxes.

Lemma 12 A set S of n points in 2d has O(n2)
unique linear projections onto 1d.

Figure 5: Two projections on a line.

Furthermore, the projections of the set S can be sorted
by their angle. Two consecutive projections differ
by the swap of two points. This can be processed
in two insertion/deletion updates using the dynamic
algorithm for intervals in 1d. The trivial algorithm
reusing the boxes discrepancy algorithm is O(n4 log n)
time. We are currently studying other approaches to
improve this trivial complexity.

5 Conclusions

The following table illustrates the time complexities
of the algorithms for computing the discrepancies for
boxes, disks and unoriented boxes.

Boxes Disks Unoriented Boxes
d = 1 O(n log n)
d = 2 O(n2) O(n3) O(n4 log n)
d ≥ 3 O(nd) O(nd+1) ?

Open problem 13 Is the maximum bichromatic
disk discrepancy problem in 2d 4-SUM hard?

Exploiting advanced data structures in the 2d set-
ting could be promising. Specifically in the case of ori-
ented boxes, we attempted fruitlessly to use quad-trees
to extend the algorithm for discrepancy on intervals
in 1d. The hope was that quad-trees of the points can
be rotated with only O(n2) updates.

Open problem 14 Is there a faster algorithm for
unoriented boxes in d ≥ 2?
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In this paper, we study optimal obstacle-avoiding
paths from a source point s to a target point t in the
2-dimensional plane. A general version of the short-
est path problem allows the two-dimensional space to
be subdivided into regions. Each of the regions has a
(non-negative) weight associated to it, representing the
cost per unit distance of traveling in that region. This
variant, called the Weighted Region Problem (WRP),
was proposed by Mitchell and Papadimitriou [3]. They
propose an approximating algorithm which computes
a (1 + ε)-approximation path in O(n8 log nNW

wε ) time,
where N is the maximum integer coordinate of any
vertex of the subdivision, W (respectively, w) is the
maximum finite (respectively, minimum non-zero) in-
teger weight assigned to faces of the subdivision.

Recently, it has been shown that the WRP cannot
be solved exactly within the Algebraic Computation
Model over the Rational Numbers (ACMQ) [2], i.e.,
the solutions to some instances of the WRP cannot
be expressed as a closed formula in ACMQ.

This result probably explains the lack of exact algo-
rithms for the WRP, and the fact that several authors
propose algorithms for computing approximated paths.
The most common scheme followed in the literature
is to position Steiner points, and then build a graph
by connecting pairs of Steiner points, see, e.g., [1, 4].
An approximate solution is constructed by finding
a shortest path in this graph, by using well-known
combinatorial algorithms (e.g., Dijkstra’s algorithm).

Let D be a set of disjoint disks in the plane, and
s, t be two points. To compute a shortest path, which
avoids D, between s and t, we can use an algorithm
based on Dijkstra’s shortest path algorithm. However,
we are not aware of any work where the shortest path
is allowed to go through the disks Di ∈ D, where each
Di has a non-negative value ki associated to it.

It is straightforward to prove that if the weight of
the disks is at least π

2 , then the disks act as obstacles,
and the problem can be solved in O(|D|2 log |D|) time.
Thus, we focus in finding an algorithm to compute an
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approximate shortest path from s to t, when 0 < ki <
π
2 .
Our first approach is the particular case in which

|D| = 1, and s is a fixed source point on the boundary
of the disk. In this case we obtained a promising
result: a (1 + ε)-approximation for the shortest path
by carefully placing Steiner points on the boundary
of the disk. In addition, we are currently working on
the generalization of this partial result to the case of
multiple disks.
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References

[1] L. Aleksandrov, A. Maheshwari, and J.-R. Sack. Deter-
mining approximate shortest paths on weighted polyhe-
dral surfaces. Journal of the ACM (JACM), 52(1):25–
53, 2005.

[2] J.-L. De Carufel, C. Grimm, A. Maheshwari, M. Owen,
and M. Smid. A note on the unsolvability of the
weighted region shortest path problem. Computational
Geometry, 47(7):724–727, 2014.

[3] J. S. B. Mitchell and C. H. Papadimitriou. The
weighted region problem: finding shortest paths
through a weighted planar subdivision. Journal of
the ACM (JACM), 38(1):18–73, 1991.

[4] Z. Sun and J. H. Reif. On finding approximate opti-
mal paths in weighted regions. Journal of Algorithms,
58(1):1–32, 2006.

XX Spanish Meeting on Computational Geometry, Santiago de Compostela, July 3-5, 2023

57



XX Spanish Meeting on Computational Geometry, Santiago de Compostela, July 3-5, 2023

58



XX Spanish Meeting on Computational Geometry, Santiago de Compostela, July 3-5, 2023

Isomorphisms of simple drawings of complete multipartite graphs

Oswin Aichholzer∗1, Birgit Vogtenhuber†1, and Alexandra Weinberger∗1

1Institute of Software Technology, Graz University of Technology, Austria.

Simple drawings are drawings of graphs on the
sphere in which any two edges intersect at most once
(either at a common endpoint or a proper crossing),
and no edge intersects itself. When investigating sim-
ple drawings, it usually is sufficient to study one rep-
resentative of each isomorphism class (for different
types of isomorphism). One essential element when
studying simple drawings are the rotations of cross-
ings or vertices, that is, the cyclic order in which
edges emanate from the vertex or crossing. Via rota-
tions and crossings, different types of isomorphisms
are defined. Two labeled simple drawings are RS-
isomorphic if either all vertices have the same rota-
tions or all have the inverse rotations, CE-isomorphic
(also known as weakly isomorphic) if the same pairs of
edges cross, CR-isomorphic if either all crossings have
the same rotations or all have the inverse rotations,
ERS-isomorphic if either all crossings and vertices have
the same rotations or all have the inverse rotations,
and CO-isomorphic if for each edge the crossings along
the edges are in the same order. Finally, two labeled
simple drawings are strongly isomorphic if there is
a homeomorphism of the sphere that transforms one
drawing into the other. Unlabeled simple drawings are
isomorphic w.r.t. some type of isomorphism if there
exists a labeling such that the labeled drawings are
isomorphic w.r.t. that type.
All listed isomorphisms and some combinations

of those isomorphisms can be relevant for general
graphs. However, there are some isomorphisms im-
plying each other by definition. CR-isomorphism and
CO-isomorphism each imply CE-isomorphism, and
ERS-isomorphism implies RS-isomorphism and CR-
isomorphism (and thus CE-isomorphism). Moreover,
for connected graphs, any two simple drawings of the
same connected graph are strongly isomorphic if and
only if they are ERS-isomorphic and CO-isomorphic
(with the same labeling) [1]. For complete graphs, CE-
isomorphism, CR-isomorphism, RS-isomorphism, and
ERS-isomorphism are all equivalent [2, 3]. Thus, the
only relevant types of isomorphism for simple draw-
ings of complete graphs are CE-isomorphism (weak
isomorphism) and strong isomorphism.
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Figure 1: Implications between different isomorphisms
for graphs G as defined in Theorem 1. An area is
marked with ∃ if there exist drawings of G that are
isomorphic w.r.t. exactly the overlapping types of iso-
morphisms (and no others), and ∅ if there aren’t.

As opposed to complete graphs, there are simple
drawings of (general) complete multipartite graphs
that are RS-isomorphic but not CE-isomorphic. We
give a complete characterization which implications
do or do not always hold for drawings of complete
multipartite graphs, depending on the cardinalities
of the partition classes; see Figure 1 for some of our
findings. As a main result, we prove the following.

Theorem 1 Let G be a complete multipartite graph
in which each partition class has at least three vertices.
Then for any two simple drawings of G it holds that
(1) CE-isomorphism implies RS-isomorphism, and
(2) CO-isomorphism implies strong isomorphism.

For simple drawings of K2,n, we show that RS-
isomorphism and CO-isomorphism together imply
strong isomorphism, while CE-isomorphism does not
imply RS-isomorphism for n ≥ 4.

References
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The free-linking task: Graphs for better discrimination of sensory similarity
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Identifying similarities and differences between foods
is of great importance for both sensory science and
industry, particularly useful to understand how con-
sumers perceive a product. This analysis was tradition-
ally performed by a trained panel, but the need for fine
training implies large costs in time and money. There-
fore, in the last few decades a number of alternative,
cheaper and faster, methods have been proposed.This
talk reviews a new rapid method which, for the first
time, used graphs for both gathering and processing
consumers’ opinions [1].

One of the most popular sensory rapid methods is
free-sorting, in which the participants are asked to
distribute the products in disjoint groups according to
their own criteria, without restrictions on the number
of groups or the number of products in each group.
See Figure 1, left.

Figure 1: Examples of a participant’s opinion using
free-sorting (left) and free-linking (right).

Despite its usefulness, free-sorting has disadvantages.
First, the groups being disjoint implies transitive sim-
ilarity, i.e., each group corresponding to a clique. In
the example, the participant had to choose whether
to group the red grape with the black grape (as in
the figure) or with the cherry (included in a group
of other red fruits). Second, free-sorting accounts for
purely binary similarity. In the example, the partic-
ipant might consider the black grape being just two
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steps away from the cherry, since both are similar to
the red grape.

In order to overcome these issues, we have recently
proposed the free-linking method for gathering opin-
ions [1]. In this method, the participants are asked to
join with a link those pairs of samples they consider
similar. For this connect-the-dots task, the samples
are presented on the vertices of a regular polygon,
randomizing the sample positions for each participant
in order to avoid bias. See Figure 1, right.

This method was tested against free-sorting in two
tasting sessions, with spice blends (10 samples, 58
participants) and chocolate bars (10 samples, 63 par-
ticipants). The results were compared using both
standard statistical techniques and graph parameters,
finding that the latter allowed to highlight that the
results from free-linking were more robust and realistic.
Figure 2 compares some parameters for the linking
and sorting global graphs obtained merging all the
participants’ opinions.

Figure 2: Comparison of mean degree versus mean
vertex connectivity for free-sorting and free-linking.
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2Dpto. de Matemática Aplicada I, Universidad de Sevilla

3Dept. de Matemàtiques, Universitat Politècnica de Catalunya

In 1933, Karol Borsuk wondered if every set X in
Rd could be partitioned into d+1 closed (sub)sets each
with diameter smaller than that of X [1]. Here, the
diameter is defined as the maximum of the distances
between two points in the set, under the Euclidean
metric. This leads to the concept of the Borsuk number.
For a set X ⊂ Rd, the Borsuk number b(X) is the
smallest number such that X can be partitioned into
b(X) subsets, each with diameter smaller than that
of X. The answer to Borsuk’s question was shown to
be positive for d = 2, 3, and for general d for centrally
symmetric convex bodies and smooth convex bodies.
To the surprise of many researchers, the general answer
turned out to be negative, as shown in 1993 by Kahn
and Kalai [2]. Since then, research on variants of
the Borsuk problem has continued in a plethora of
directions, see [3] for a recent survey.

In this work, we propose a formulation of the prob-
lem in the context of geometric graphs. A (plane) ge-
ometric graph is a plane undirected graph G = (V,E)
whose vertices are points in R2, and whose edges are
straight-line segments connecting pairs of points. In
addition, each edge has a weight equal to the Euclidean
distance between its endpoints. We are interested in
the locus of G, denoted by LG, which is the set of
all points of the plane that are on G. Thus, we treat
both G and LG, interchangeably, as a closed point set.
The distance between two points in LG is the length of
a shortest path between them in G (note such a path
will contain up to two fragments of edges, if the points
are not vertices). The diameter of LG or (continuous)
diameter of G is the maximum distance between any
two points in LG. In contrast to (abstract) graphs, in
a geometric graph, there can be an infinite number of
pairs of points whose distance is equal to the diameter.

We extend the concept of Borsuk number to geo-
metric graphs. Conceptually, it is the smallest number
b(G) such that G can be partitioned into b(G) sub-
graphs, each with smaller diameter than LG. However,
we need to define carefully how a geometric graph can
be partitioned. We consider partitions of LG by a
sequence of cuts with straight lines. A line ` naturally
partitions LG into two geometric subgraphs (possibly,
one empty). Moreover, to guarantee that the parti-
tion by ` does not produce a disconnected subgraph,

Figure 1: Left: a square with side length 1 and diame-
ter 2 (given by green paths), and a partition with a
line. Right: a 4-star partitioned into three subgraphs.

we add to both subgraphs the maximal segment of `
intersecting LG.1 Figure 1 (left) illustrates this for a
square. After partitioning the square with a vertical
line ` (dashed) through its center point, we obtain
two subgraphs: all points of LG on each halfplane
induced by `, union the longest segment in ` with
endpoints in LG ∩ ` . Since this partitions the graph
into two subgraphs (of LG ∪ `), each with smaller di-
ameter than that of LG, its Borsuk number is two
(best possible). However, sometimes more subgraphs
are needed. The example in Figure 1 (right) shows a 4-
star graph, requiring at least two lines, giving at least
three subgraphs. Thus its Borsuk number is three.

This illustrates the main question studied in this
work: What is the Borsuk number of a geometric
graph? Clearly, the answer depends on the graph.

In this talk, we will show that, in general, any geo-
metric graph with n vertices can be partitioned with
lines into 2n subgraphs with smaller diameter. More-
over, we will give upper bounds for b(G) that depend
on the number of disjoint diameter paths in the graph.
We will also show that the Borsuk number of a tree
can be two or three, and discuss how to efficiently
figure it out. Finally, we will mention several open
problems in relation to this new concept.
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Crossing minimal and generalized convex drawings: 2 non-hard problems
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Simple drawings are drawings of graphs in the plane
such that each pair of edges meets in at most one point,
either a common endvertex or a crossing. In this work
we study two problems on simple drawings that are
hard in general but get easy on a certain subclass. As
the first problem, Arroyo et al. [1] showed that it is
NP-complete to decide whether a specific edge can be
added to a simple drawing of a non-complete graph
without violating simplicity. In contrast to this, by
Levi’s Extension Lemma, every pseudolinear drawing
can be extended by any set of edges. We show a similar
result for crossing minimal drawings, that is, drawings
of a graph G which contain the minimum number of
crossings over all drawings of G.

Theorem 1 Let D be a crossing minimal drawing of
a graph on n vertices. Then D can be extended to a
simple drawing of the complete graph Kn.

Proof idea. Note that every crossing minimal draw-
ing D is a simple drawing. In a first step we show that
adding a single edge such that it creates a minimum
number of additional crossings results in a simple draw-
ing D′. However, D′ need not be crossing minimal
anymore. So in a second step we add a set of edges
simultaneously to D such that each single added edge
has a minimum number of crossings with D. Over
all possibilities to do so, we then show that choosing
a drawing D′′ which in addition minimizes the total
number of crossings ensures that D′′ is simple. □

While it is known that no crossing minimal drawing
of Kn is pseudolinear for large enough n, Arroyo et
al. [2] asked the question whether all crossing minimal
drawings of Kn might be generalized convex drawings
(short g-convex ). These are simple drawings where
every triangle has a convex side ∆, that is, for each
pair of vertices in ∆ also the edge connecting them lies
completely inside ∆. If there exists a choice of a convex
side for each triangle such that every triangle T2, being
contained in the convex side ∆1 of a triangle T1, has
its convex side ∆2 contained in ∆1, then the drawing
is called hereditarily convex (short h-convex ).
This brings us to the second problem. Garćıa et

al. [3] showed that it is NP-complete to decide whether

∗Email: orthaber@ist.tugraz.at. Research supported by the
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a simple drawing D of Kn contains a plane (no two
edges cross) subdrawing with a given number of edges.
In this context we call a subdrawing of D maximal
plane if it is plane and no edge of D can be added to
it without violating planarity. We call a subdrawing
maximum plane if it is plane and contains the highest
number of edges over all plane subdrawings of D. If a
plane subdrawing contains 3n− 6 edges, then we call
it a combinatorial triangulation.

Theorem 2 Let D be a g-convex drawing of Kn.
Then every maximal plane subdrawing of D is maxi-
mum plane. Moreover, if D is h-convex but not pseu-
dolinear, then every maximal plane subdrawing of D
is a combinatorial triangulation.

We can show this by combining some results from
[2] and [3]. We can further confirm by computer that
all crossing minimal drawings of Kn for n ≤ 12 are
h-convex. Since all crossing minimal straight-line or
pseudolinear drawings are known to have a triangular
convex hull, this gives rise to the following conjecture.

Conjecture 3 Let D be a crossing minimal drawing
of Kn for n ≥ 3. Then every maximal plane subdraw-
ing of D is a combinatorial triangulation.

Acknowledgments. We thank O. Aichholzer, H.
Bergold, M. Scheucher, B. Vogtenhuber, and A. Wein-
berger for inspiring discussions and helpful comments.
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Some routing problems on a half-line with release times and deadlines
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The following problem is studied in [1, 3]. Let N =
{1, 2, . . . , n} be a set of customers located on the real
half-line R+ and let D be a depot located at x = 0.
The distance (and also the travel time) from customer
i to the depot is denoted by τi. A vehicle has to deliver
goods from the depot to the customers. Each customer
places an order to the depot and this order is associated
with a time window [ri, li], with li = ri + S − τi. The
release time ri specifies the earliest possible time the
vehicle can depart the depot to deliver at i. S can
be seen as a service guarantee such that customer i
cannot be served after ri + S. Thus, ri + S − τi is the
latest dispatch time for customer i. For example, we
can think of a restaurant delivering meals at home as a
depot, the release time of an order (a customer ordering
for a meal) as the time that the order can be dispatched
from the restaurant after preparing the meal, and S
as the time in which the restaurant guaranties that
the order will be delivered.
The problem analyzed in [3] is determining the

minimum possible completion time c∗ of a schedule
of delivery routes that can be executed by a single
driver, each starting and ending at the depot, such
that each order i is dispatched at or after ri and de-
livered at or before ri + S. Any feasible solution to
the problem will consist of a set of k routes, visiting
a subset of customers in each route. Assuming that
the customers are ordered according to their release
times, that is, r1 ≤ . . . ≤ rn, it is proved in [3] that
there is always an optimal delivery schedule with non-
interlacing routes, where two routes K1 and K2, with
min{i|i ∈ K1} < min{j|j ∈ K2}, are non-interlacing
if and only if max{ri|i ∈ K1} < min{rj |j ∈ K2}.
As a consequence, in any delivery schedule with non-
interlacing routes, the customers visited in any route
have consecutive release times.

Geometrically, one can imagine the set of customers
as a set of n horizontal segments s1, . . . , sn such that
the y-coordinate of si is τi and the x-coordinates of
the endpoints of si are ri and li, respectively. The
abscissa axis represents time. For instance, Figure 1
shows a set of eight customers and a feasible schedule
(in red), consisting of three routes, K1,K2 and K3, to
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Figure 1: A feasible schedule to serve eight customers.

serve the eight customers. After waiting at the depot,
K1 starts at r2, dispatches orders 2, 1 and 3, and ends
at r2 + 2τ3. K2 starts at r2 + 2τ3, dispatches orders
4 and 5, and ends at r2 + 2τ3 + 2τ5. Finally, after
waiting again at the depot for a while, K3 starts at r8,
dispatches orders 8, 7 and 6, and ends at r8 + 2τ6.

Let c(i) be the minimum completion time of a non-
interlacing schedule serving orders {1, . . . , i}, or ∞ if
it is not possible to serve {1, . . . , i} feasibly with a
single server. Thus, c∗ will be given by c(n). Defining
c(0) = 0, the following recurrence [3] allows one to
compute c(i), for i = 1, . . . , n:

c(i) = min
0≤j<i

{
max{c(j), ri}+ 2 max

j<k≤i
{τk} |

max{c(j), ri} ≤ min
j<k≤i

{lk}
}

In this talk, we will show how to solve this recurrence
in O(n log n) time, improving the O(n2) algorithm
given in [3]. In addition, using the algorithm described
in [2], if S =∞, that is, there are no deadlines, then
the previous recurrence can be solved in O(n) time,
improving the O(n2) algorithm provided in [3].
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Simple drawings are drawings of graphs in which
the edges are Jordan arcs and each pair of edges share
at most one point (a proper crossing or a common
endpoint). The rotation of a vertex is the cyclic order
of its incident edges. The rotation system of a simple
drawing is the collection of the rotations of all vertices.
Two simple drawings of Kn have the same crossing
edge pairs if and only if they have the same or inverse
rotation systems [1].

A simple drawing D of Kn is generalized twisted if
there exists a point O such that each ray emanating
from O crosses each edge of D at most once and there
exists a ray r emanating from O such that all edges
of D cross r. We call a rotation system generalized
twisted if there exists a generalized twisted drawing
with that rotation system. Generalized twisted draw-
ings have been used to improve bounds on plane sub-
structures in (general) simple drawings of complete
graphs [2]. Moreover, they are the biggest class for
which it is known that each drawing has exactly 2n−4
empty triangles [3], which is conjectured to be the
minimum for all simple drawings. In addition to being
useful for proving general results, generalized twisted
drawings are quite interesting in their own right.
In this talk, we present an efficient algorithm to

decide if a rotation system is generalized twisted.

Theorem 1 Let R be the rotation system of a simple
drawing ofKn. Then deciding whether R is generalized
twisted can be done in O(n2) time.

To obtain the algorithm, we first show the follow-
ing statement for generalized twisted drawings; see
Figure 1 for an illustration.

Theorem 2 Let R be the rotation system of a simple
drawing D of Kn and let V be the set of vertices of D.
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Figure 1: The vertices v1 and v2 are as in Theorem 2;
arrows around them and colors indicate the partition
classes. Only edges incident to v1 or v2 are depicted.

Then R is generalized twisted if and only if there exist
two vertices v1 and v2 in V and a bipartition A ∪ B
of the vertices in V \ {v1, v2}, where some of A or B
can be empty, such that: 1. For every pair of vertices
u1 and u2 that are either both in A or both in B, the
edge (u1, u2) crosses the edge (v1, v2). 2. For every
pair of vertices a ∈ A and b ∈ B, the edge (a, b) does
not cross (v1, v2). 3. Beginning at v2 (respectively v1),
in the rotation at v1 (respectively v2), all the vertices
in B appear before all the vertices in A.

The algorithm then runs in two steps. In the first
step, we find O(1) possible candidates for v1 and v2 as
in Theorem 2, using properties on empty triangles in
generalized twisted drawings from [3]. In the second
step, we check whether one of those candidates fulfills
the requirements of Theorem 2. We show that each of
the two steps can be done in O(n2) time.
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Simple drawings are drawings of graphs in which
the edges are Jordan arcs and each pair of edges share
at most one point (a proper crossing or a common
endpoint). The rotation of a vertex is the cyclic order
of its incident edges. The rotation system of a simple
drawing is the collection of the rotations of all vertices.
An abstract rotation system of Kn gives for every
vertex v, a cyclic order of the other n−1 vertices. Not
every abstract rotation system can be realized as a
simple drawing, but this realizability can be checked
in O(n5) time [1]. Two simple drawings of Kn have
the same crossing edge pairs if and only if they have
the same or inverse rotation systems [2]; such drawings
are called weakly isomorphic.

A simple drawing D of Kn is generalized twisted if
there exists a point O such that each ray emanating
from O crosses each edge of D at most once and there
exists a ray r emanating from O that crosses all edges
of D. We call a rotation system generalized twisted if
there exists a generalized twisted drawing with that
rotation system. Generalized twisted drawings have
been used to improve bounds on plane substructures
in (general) simple drawings of complete graphs [3].
Moreover, they are the biggest class for which it is
known that each drawing has exactly 2n − 4 empty
triangles [4], which is conjectured to be the minimum
for all simple drawings. In addition to possibly being
useful for further general results, generalized twisted
drawings are quite interesting in their own right.
In this talk, we present the following new charac-

terization of generalized twisted drawings via abstract
rotation systems.

Theorem 1 Let R be an abstract rotation system of
Kn with n ≥ 7. Then R is generalized twisted if and
only if every rotation sub-system induced by 5 vertices
is generalized twisted.
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Up to relabeling, there is one unique rotation system
of K5 that is generalized twisted1 , and one unique
rotation system R of K6 such that every rotation sub-
system ofR induced by 5 vertices is generalized twisted,
but R is not generalized twisted [3]. In particular,
Theorem 1 does not hold for n = 6.

To prove Theorem 1, we computationally verify it
for 7 ≤ n ≤ 10 and then use this as an induction
base to prove the statement for general n. We use
the following two concepts as our main ingredients.
(1) A pair of cells in a drawing D is an antipodal vi-cell
pair, if both cells have a vertex on their boundary and
for any triangle of D, the two cells lie on different
sides. A simple drawing D of Kn is weakly isomorphic
to a generalized twisted drawing if and only if D has
two antipodal vi-cells [3]. We show that any simple
drawing D has at most two antipodal vi-cell pairs, and
it has exactly two if and only if there is an edge e
of D such that e crosses every edge in D not adjacent
to e. (2) A vertex-empty triangle xyz is an empty
star triangle at x if no edge incident to x crosses yz.
For every vertex x of a generalized twisted drawing D,
there are two empty star triangles at x [4]. We show
that D has exactly two pairs of antipodal vi-cells if
and only if there is a vertex v such that the two empty
star triangles at v are adjacent.
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In 1962, Tutte [5] proved that the number of trian-
gulations, that is maximal planar graphs with a fixed
face with vertices a, b, and c, and n additional vertices
is ψn,0 = 2

n(n+1)

(
4n+1
n−1

)
= Θ

(
1

n5/2 9, 481
n)

. See [5] for

a precise definition. We call these triangulations com-
binatorial triangulations. Note that in a combinato-
rial triangulation, the edges need not be straight-line
segments. In contrast to combinatorial triangulations,
there is no general formula for the number of geomet-
ric triangulations, which are defined for a given set S
of n points in the plane. A geometric triangulation
on S is a maximal planar straight-line graph with
vertices the set S. Finding the maximum number
tr(n) of geometric triangulations, among all sets S of
n points in general position in the plane, is a long-
standing open problem in Discrete Geometry. The
current best bounds are Ω(9, 08n) ≤ tr(n) ≤ O(30n),
[2, 3]. In [4] the question was raised if the numbers of
combinatorial and geometric triangulations are some-
how related? See Fig. 1 for an example that shows
the three combinatorial triangulations on five vertices,
but only two of them are geometric triangulations on
the shown set S of five points. We study the following
problem:
Question: In how many ways can a combinatorial
triangulation with n vertices be drawn on a set of n
points in the plane?
Note that any upper bound cn on this number yields
trivially an upper bound for tr(n) of O((c · 9, 481)n).
It turns out to be very difficult to find examples of
combinatorial triangulations which can be drawn in
many different ways on a given point set S. A first
simple bound is shown in the following:
• A triangulation formed by nested triangles
The set S of n points in the plane in general posi-
tion has n

3 layers of three points as in Fig. 2. The
combinatorial triangulation T we consider is the one
shown in this figure. We observe that each triangular
layer can be rotated to produce a different geometric
triangulation of S, while maintaining the combina-
torial triangulation T . This yields a lower bound of
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Figure 1: Combinatorial triangulations on 5 vertices.

Figure 2: A triangulation formed by nested triangles
and a rotation between consecutive layers.

Ω
(
2

n
3

)
= Ω(1, 2599n) different drawings of T on S.

• A triangulation on the double chain We im-
prove upon this bound by defining another combina-
torial triangulation T recursively, and show a lower
bound on the number of drawings of T on the so-
called double chain point configuration [1].

Theorem 1 There exists a combinatorial triangula-
tion T and a set S of n points in the plane such that
T has at least Ω(1, 31n) different drawings on S.
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Coverage maps on domains with obstacles
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Figure 1: Coverage map of eight facilities (left) and twenty facilities (right)

Abstract

The coverage map of a set of facilities represents, for
each point within a domain, whether at least one
facility covers it (see Figure 1). That is, we know
if at least one facility is at most at a given distance
(the facility coverage radius) through the free space of
each point of the domain. In this work, we propose
a parallel method that runs on the GPU to compute
coverage maps over domains given by binary images.
The input is a binary image, where each pixel is marked
depending on whether it is free space or not, the set
of facilities, and their coverage radius. The output
is an image where each pixel is marked as covered or
uncovered by the set of facilities.

We use a two-step iterative process that combines
a quasi-Euclidean distance [1] propagation along free
space and an exact Euclidean distance computation
(without propagation). We iteratively repeat these
steps until no updates occur. During the process, we
obtain the distance of each pixel to its nearest site and
the pixel-id of the last corner (of the current shortest
path) by using two CUDA-kernels executed on 2d-grids
and 2d-blocks and considering a thread per pixel.

The quasi-Euclidean distance propagation along free
space uses a GPU parallel Bellman-Ford algorithm.
The used graph (computed on the fly from the binary
image) has as vertices the free pixels, and connects a
free pixel with its, at most 8, neighboring free pixels.
At the beginning of the process, pixels containing sites
store a 0 as distance and its pixel-id as last-corner-id.
The rest store ∞ as distance and -1 as last-corner-
id (uncovered pixel). Throughout the process, in a
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similar way to the Euclidean distance transformation
algorithms [2], each pixel propagates towards itself the
paths that reach its free neighbors. If the length of
any of these paths is less than the current distance,
this distance and the last corner-id are updated ac-
cordingly.
An inner-block propagation followed by an inter-

block propagation expands the current paths through
free space according to the quasi-Euclidean distance.
A boolean variable and two synchronizing points (per
block) stop the inner-block propagation when no up-
dates occur within the block. The inter-block propa-
gation uses a global boolean to keep calling the kernel
while updates occur.

The second step computes the exact Euclidean
length of the obtained paths. The covered-pixel
threads retrieve the path reaching the pixel while deter-
mining its Euclidean length. They add the Euclidean
distance from the pixel to its last-corner-id to the dis-
tance of this last corner to the previous one, and so on,
until reaching the original site. This two-step iteration
leads to exact free-space coverage maps.

Funding

Research supported by grants PID2019-106426RB-
C31 and PDC2021-120997-C32 funded both by
MCIN/AEI/10.13039/501100011033 and the 2nd
one also by European Union NextGenerationEU/PRTR.

References

[1] Montanari, U. (1968). A Method for Obtaining Skele-
tons Using a Quasi-Euclidean Distance. Journal of
the ACM (JACM), 15, 600–624.

[2] Maurer, C. R., Qi, R., and Raghavan, V. (2003). A
linear time algorithm for computing exact Euclidean
distance transforms of binary images in arbitrary di-
mensions. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 25(2), 265–270.

XX Spanish Meeting on Computational Geometry, Santiago de Compostela, July 3-5, 2023

75



XX Spanish Meeting on Computational Geometry, Santiago de Compostela, July 3-5, 2023

76



XX Spanish Meeting on Computational Geometry, Santiago de Compostela, July 3-5, 2023

Fault-tolerant resolvability in maximal outerplanar graphs

Carmen Hernando∗1, Montserrat Maureso†1, Mercè Mora‡1, and Javier Tejel§2
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Resolving sets are useful to distinguish the vertices
of a graph. A set S of vertices of a graph G is a
resolving set if for every pair of vertices u and v of
G there is at least one vertex w in S such that the
distances from w to u and from w to v are distinct.
The metric dimension of G, denoted by β(G), is the
minimum cardinality of a resolving set. These concepts
were introduced for general graphs independently by
Slater [4] and by Harary and Melter [2], and have since
been widely investigated.

Fault-tolerant resolving sets were introduced to dis-
tinguish the vertices of a graph even if a vertex fails
[3]. A resolving set S of a non-trivial connected graph
G is fault-tolerant if S \ {v} is also a resolving set for
each v ∈ S. The fault-tolerant metric dimension of
G, denoted by β′(G), is the minimum cardinality of
a fault-tolerant resolving set of G. Since V (G) and
V (G) \ {v} are both resolving sets for every vertex v
of a graph G of order at least 2, this parameter is well-
defined whenever G is a non-trivial graph. Moreover,
β′(G) ≤ n and, obviously, β′(G) ≥ β(G) + 1.

A planar graph is outerplanar if it admits a plane
embedding such that all the vertices belong to the
unbounded face. A maximal outerplanar graph is an
outerplanar graph such that the addition of an edge re-
sults in a non-outerplanar graph. Maximal outerplanar
graphs can be viewed as triangulated polygons.

This ongoing work is devoted to studying the fault-
tolerant resolvability for maximal outerplanar graphs.
Our first goal is to prove lower and upper bounds
on the fault-tolerant metric dimension. Hence, the
study of resolving sets and the metric dimension of
maximal outerplanar graphs will be useful for our
purpose. In [1], the authors prove that the metric
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dimension of a maximal outerplanar graph of order n,
n ≥ 5, is at most d 2n5 e. Moreover, this bound is tight
and is attained for some fan graphs, a special family
of maximal outerplanar graphs.

It is easy to see that β′(G) ≥ 3, if G is a maximal
outerplanar graph. Furthermore, we show that only
two maximal outerplanar graphs, having orders 3 and
6, attain this lower bound. For maximal outerplanar
graphs of order at least 7, the lower bound for β′(G) is
4 and there is an infinite family of maximal outerplanar
graphs such that β(G) = 2 attaining this bound.

Regarding to the upper bound, we conjecture that
β′(G) ≤ dn2 e for a maximal outerplanar graph G of
order n, n ≥ 7. At the moment, we have proved that
fan graphs attain this upper bound. Moreover, fan
graphs of even order have only one fault-tolerant re-
solving set of minimum size, concretely, the set formed
by alternating vertices of the unbounded face and not
containing the vertex of degree n− 1 (see Figure 1).

Figure 1: The only fault-tolerant resolving set of size 6
of the fan of order 12 is formed by the squared vertices.
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A fundamental class of problems in graph theory and
graph drawing concerns augmenting existing graphs
to achieve some desired properties. In this talk, we
approach the natural question of augmenting plane
geometric graphs to meet degree constraints.
A geometric graph G = (V,E) is a graph drawn in

the plane such that its vertex set V is a point set in
general position (no three points are collinear) and its
edge set E is a set of straight-line segments between
those points. A geometric graph is plane if no two
of its edges cross and it is convex if its vertices are
in convex position. The visibility graph of a plane
geometric graph G, denoted by Vis(G), is a geometric
graph that has V as its vertex set and two vertices u
and v share an edge in Vis(G) if and only if uv /∈ E
and uv does not cross any edge in E (so G can be
augmented by uv); see Figure 1 (left) for an example.

Figure 1: Left: A plane geometric graph G (in black)
and its visibility graph Vis(G) (in gray). Right: A solu-
tion set for G and the unhappy vertices (red squares).

Given a plane geometric graph G, the problem we
study is to augment it with straight-line edges such
that the result is a plane geometric graph in which
constraints concerning the degrees of the vertices are
met. Even in the simplest version of this problem,
where the degree constraints are modulo two, even
or odd degree, the problem is NP-hard for general
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Table 1: Summary of results on augmenting a plane
geometric graph G = (V,E) to meet parity constraints.

Plane geometric G Any R / R = V / Eulerian

General NP-hard [1]

Convex P (Theorem 1)

Paths P (Theorem 2)

Trees ?

graphs [1], and conjectured to be NP-hard even for
trees [1]. In this talk, we answer the question about
the tractability for geometric paths; see Table 1.

The degree parity constraints can be interpreted as
a set of unhappy vertices R that would like to change
the parity of their degree. We refer to vertices that
are not unhappy as happy. A subgraph H of Vis(G)
is called a solution set for (G,R) if H is crossing-free
and the vertices that have odd degree in H are exactly
those in R; see Figure 1 (right). Thus, the problem
can be reformulated as deciding the existence of a
solution set for (G,R). Note that by the handshaking
lemma, a solution set can only exist if |R| is even.
For convex plane geometric graph we obtain a sur-

prisingly simple efficient algorithm:

Theorem 1 Let G = (V,E) be a convex plane geo-
metric graph, and let R ⊆ V be the set of unhappy
vertices. There exists a linear-time algorithm to decide
whether (G,R) admits a solution set.

Using this result, we obtain a polynomial-time al-
gorithm for plane geometric paths, solving an open
problem by Catana et al. [1].

Theorem 2 Let P = (V,E) be a plane geometric
path and let R ⊆ V with |R| even. There exists an
algorithm to decide whether (P,R) admits a solution
set in O(|V | log |V |) time.

Finally, we characterize those paths that admit a
positive answer for any even set R of unhappy vertices.

References

[1] J. C. Catana, A. G. Olaverri, J. Tejel, and J. Urrutia.
Plane augmentation of plane graphs to meet parity
constraints. Appl. Math. Comput., 386:125513, 2020.

XX Spanish Meeting on Computational Geometry, Santiago de Compostela, July 3-5, 2023

79



XX Spanish Meeting on Computational Geometry, Santiago de Compostela, July 3-5, 2023

80



XX Spanish Meeting on Computational Geometry, Santiago de Compostela, July 3-5, 2023

Computing the (α, k)-hull for points in convex position
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Abstract

We present an efficient O(n log n)-time and O(n)-space
algorithm for computing the (α, k)-hull of a set P of
n points in convex position in the plane.

1 Introduction

Let P be a set of n ≥ 3 points in convex position in the
plane, α ∈ (0, π] an angle, and k ∈ N, 1 ≤ k ≤ bn/2c.
The (α, k)-hull of the set P is the (possible empty)
curvilinear region defined by the intersection of all
α-halfplanes that contain at least n− k + 1 points of
P , where an α-halfplane is the complement of an open
wedge of aperture angle α. That is, the (α, k)-hull of
P is the locus of the points u such that any wedge with
apex u and aperture angle α contains at least k points
of P . See Claverol et al. [1], where an O(n2 log n)-time
algorithm was presented for computing this hull.

The (α, k)-hull of a point set has tentative real ap-
plications. Namely, suppose that P represents a set of
key points of a terrain, and we need to install a surveil-
lance camera which has an angle of vision equal to α,
rotates constantly, and at every moment should watch
at least k of the key points. Hence, the (α, k)-hull of
P is the locus of the possible locations in the terrain
to install the rotating camera.

2 The algorithm

Each k + 1 consecutive vertices of conv(P ) define an
open disk D such that all points of conv(P ) \D see
these vertices with angle at least α. We have n disks
in total, and it can be proved that conv(P ) \ D is
precisely the (α, k)-hull of P , where D is the union of
all disks D.

The contour of D consists of O(n) circular arcs [2],
and by using the algorithm of Imai et al. [2] based on
a Voronoi diagram for disks, they can be computed in
O(n log n) time. The interior contour of D, bounding
the holes of D, defines the (connected components

*Email: luis.herrerab@utem.cl
�Email: pablo.perez.l@usach.cl.
�Email: carlos.seara@upc.edu.

of) the (α, k)-hull of P . See Figure 1 for a couple of
examples of the (α, k)-hull of P . Thus, we have the
following result.

Theorem 1 Given α ∈ (0, π] and 1 ≤ k ≤ bn/2c, the
(α, k)-hull of a set P of n points in convex position
has O(n) complexity, and can be computed in efficient
O(n log n) time and O(n) space.
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Figure 1: (Top) The (π/2, 2)-hull formed by a connected
region. (Bottom) The (π/2, 1)-hull formed by 5 connected
regions.
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Abstract

Spherical occlusion diagrams (SOD) were introduced
as an axiomatic framework to analyze the visibility
maps of points in the interior of a nonconvex polyhe-
dron from which no vertex is visible. Planar occlu-
sion diagrams (POD), corresponding to a viewpoint
at infinity, can be defined analogously in terms of or-
thogonal projections of a lower envelope of polyhedra.
We have recently constructed PODs and SODs that
are not realizable as visibility maps. Here we show
that every axis-aligned POD is realizable and follow
up with open problems.

Introduction. The classical art gallery problem asks
for the minimum number of point guards that can
jointly see all points in a nonconvex polyhedron P in
Euclidean space, where points s and t see each other if
the line segment st does not cross any face of P. It is
well known that guards stationed at the vertices of P
do not always suffice in R3, as some points s ∈ R3 in
the interior of a polyhedron P may not see any of the
vertices [4, Sec. 10.2]. Viglietta [7] recently introduced
spherical occlusion diagrams (SOD, for short) to an-
alyze the visibility map VP(s) of such a point s with
respect to P. An SOD is defined so that it satisfies
key properties of visibility maps. In particular, if no
vertices of a polyhedron P are visible from a viewpoint
s, then the visibility map VP(s) is an SOD. Viglietta
conjectured that the converse also holds, that is, ev-
ery SOD is the visibility map VP(s) for some point s
and polyhedron P in R3. We have recently disproved
this conjecture, by constructing an SOD that is not
realizable as a visibility map in R3 [3].

Related work. Our results show that SODs are not
always visibility maps. Nevertheless, SODs have al-
ready been used in 3-dimensional visibility problems:
Cano et al. [2] proved that every polyhedron P in R3

can be guarded by at most 5
6 of its edges; moreover,

when P is homeomorphic to a ball and all its faces
are triangles, it can be guarded by at most 29

36 of its
edges. Tóth et al. [6] proved that every point that
does not see any vertex of a polyhedron P must see
at least 8 edges of P, and this bound is tight.

*Email: kimberly.kokado.43@my.csun.edu
�Email: csaba.toth@csun.edu

The realizability of visibility maps has been previ-
ously studied for lines. A weaving pattern is a simple
arrangement of n lines in R2 together with a binary
relation between intersecting lines; a weaving pattern
is realizable if it is the orthogonal projection of an ar-
rangement of disjoint lines in R3 such that the above-
below relation between lines matches the given binary
relation between their orthogonal projections. Pach et
al. [5] showed that almost all weaving patterns of n
lines are nonrealizable for sufficiently large n. Basu et
al. [1] generalized the result to arrangements of semi-
algebraic curves.

Outlook. We have shown that spherical occlusion di-
agrams (SODs) are not equivalent to visibility maps
in 3-space. Our result raises several open problems:
Is there a simple (axiomatic) characterization of vis-
ibility maps? Can one decide efficiently whether a
given SOD is a visibility map? If so, can one find a
realization efficiently? What is the maximum (combi-
natorial, topological, or bit) complexity of the realiza-
tion space for an SOD with n arcs for a given positive
integer n?

References

[1] S. Basu, R. Dhandapani, and R. Pollack, On the re-
alizable weaving patterns of polynomial curves in R3.
in Proc. 12th Sympos. Graph Drawing (GD), volume
3383 of LNCS, Springer, 2004, pp. 36–42.

[2] J. Cano, C. D. Tóth, J. Urrutia, and G. Viglietta, Edge
guards for polyhedra in three-space, Comput. Geom.
104 (2022), article 101859.

[3] K. Kokado and C. D. Tóth, Nonrealizable planar
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Maintaining low congestion potential among moving entities
using minimal query frequency ∗
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Abstract

Consider a collection of entities moving continuously
with bounded speed, but otherwise unpredictably, in
some low-dimensional space. Two such entities en-
croach upon one another at a fixed time if their sepa-
ration is less than some specified threshold. Encroach-
ment, of concern in many settings such as collision
avoidance, may be unavoidable. However, the associ-
ated difficulties are compounded if there is uncertainty
about the precise location of entities, giving rise to
potential encroachment and, more generally, potential
congestion within the full collection.

We consider a model in which individual entities
can be queried for their current location (at some fixed
cost) and the uncertainty regions associated with an
entity grows in proportion to the time since that entity
was last queried. The goal is to maintain low poten-
tial congestion, measured in terms of the (dynamic)
intersection graph of uncertainty regions, using the
lowest possible query cost. Previous work [EKLS2013,
EKLS2014, EKLS2016, BEK2019], in the same uncer-
tainty model, addressed the problem of minimizing
the congestion potential of point entities using loca-
tion queries of some bounded frequency. It was shown
that it is possible to design a query scheme that is
O(1)-competitive, in terms of worst-case congestion
potential, with other query schemes (even those that
correctly guess the trajectories of all entities), subject
to the same bound on query frequency.

In this talk we outline recent results that address
a more general problem with the dual optimization
objective: minimizing the query frequency, measured
in terms of the minimum spacing between queries
(query granularity), over any fixed time interval, while
guaranteeing a fixed bound on congestion potential
of entities with positive extent. This complementary
objective necessitates quite different algorithms and
analyses. Nevertheless, our results parallel those of the
earlier papers, specifically tight competitive bounds
on required query frequency, with a few surprising

∗Based on joint work with William Evans (see
arxiv:2205.09243). Research supported in part by Dis-
covery Grants from the Natural Sciences and Engineering
Research Council of Canada.
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differences.
Applied to collision avoidance, our results show that

it is possible to maintain, at all times, a certificate for
each entity ei that identifies some pre-specified num-
ber of other entities that could potentially encroach
upon ei (those warranting more careful local moni-
toring), using competitively-optimal query frequency
An additional application, considered in earlier work,
concerns entities that are mobile transmission sources,
with associated broadcast ranges, where the goal is to
minimize the number of broadcast channels so as to
eliminate potential transmission interference. In this
case, using competitively-optimal frequency, our query
strategy maintains a fixed bound on the number of
broadcast channels, an objective that seems to be at
least as well motivated as optimizing the number of
channels for a fixed query frequency (the objective in
earlier work).
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